Esercizio 1. Dato il problema di Cauchy

$$\begin{cases} y'(x) = y(x)/x + x^3 \arctan x \\ y(k) = 0 \end{cases}$$

- a) Stabilire per quali valori del parametro reale k (se ce ne sono) il problema ammette una ed una sola soluzione in un intorno del punto iniziale;
- b) calcolare la soluzione (se esiste) nel caso k = -1, determinando anche il più grande intervallo in cui essa è definita.

Esercizio 2. È data la seguente equazione

$$\ln x = \frac{x - k}{x}$$

- a) Determinarne il numero delle soluzioni al variare del parametro $k \in \mathbb{R}$.
- b) Sia ora $f(x) = \ln x \frac{x+1}{x}$. Verificare che f è invertibile nel suo dominio e, detta f^{-1} la sua inversa, calcolare, se esistono, $(f^{-1})'(-2)$ e $(f^{-1})''(-2)$.

Esercizio 3. Sia

$$g(x) = \begin{cases} x\sqrt{x} + \alpha e^x & \text{se } x \ge 0 \\ x^2 \ln|x| + \beta & \text{se } x < 0 \end{cases}, \quad \alpha, \beta \in \mathbb{R}.$$

- a) Stabilire per quali valori di α , β , se esistono, g è derivabile in \mathbb{R} . Valutare inoltre se esistono α , $\beta \in \mathbb{R}$ per cui g sia derivabile due volte in \mathbb{R} .
- b) Siano ora $\alpha = \beta = 0$. Tracciare il grafico della funzione $f(x) = \int_1^x g(t) dt$, determinandone dominio, limiti agli estremi, monotonia e concavità. Calcolare esplicitamente f(-1) nel caso esista.