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Abstract. We prove some a priori inequalities for solutions of mixed boundary-value pro-
blems for a class of divergence form elliptic equations with discontinuous and unbounded
coefficients in unbounded domains.
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1. Introduction

Given an open set Ω in Rn , bounded or unbounded, we consider the subspace V of
H1(Ω) defined by

V := {v ∈ H1(Ω) : v = 0 on Γo in the sense of H1(Ω)},(1)

where Γo is a closed (eventually empty) subset of ∂Ω. Given the bilinear form

a(u, v) :=
∫

Ω

{ n∑
i, j=1

aijuxi vx j +
n∑

i=1

(biuxi v + diuvxi ) + cuv
}

dx(2)

+
∫

Γ

guv dσ

(where Γ := ∂Ω\Γo), let u ∈ V be a solution of the equation

a(u, v) =
∫

Ω

{
fov +

n∑
i=1

fivxi

}
dx +

∫
Γ

hv dσ ∀v ∈ V.(3)

It is easy to remark that, if all the considered functions are supposed sufficiently
regular (for example belonging to C1(Ω)) as well as the boundary of Ω (or at least
its part Γ), it is possible to define the operator

Lu := −
n∑

i, j=1

aijuxi x j +
n∑

i=1

[
bi − di −

n∑
j=1

(aij)x j

]
uxi +

[
c −

n∑
i=1

(di)xi

]
u,(4)
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hence the function u satisfies (3) if and only if it satisfies the following equalities:




Lu = fo −
n∑

i=1

( fi)xi in Ω,

n∑
i, j=1

aijuxi N j +
n∑

i=1

di Niu + gu = h +
n∑

i=1

fi Ni on Γ,

u = 0 on Γo,

(3’)

where N denotes the normal unit vector to Γ, oriented towards outside Ω. The
function u therefore is a solution of a “mixed boundary-value problem” for the
uniformly elliptic operator L. Nevertheless the bilinear form (2) and the equation
(3) make sense even if the coefficients and data of the bilinear form a(., .) are not
regular.

The aim of the present note is to study the minimal hypotheses on the coeffi-
cients and data in order that the bilinear form a(., .) be bounded on V × V even in
the case of unbounded Ω. By extending the results of [6] we prove also that, if λ is
sufficiently large, the bilinear form a(., .) + λ(., .)L2(Ω) is coercive on V × V , so
that for the same values of λ the boundary-value problem




a(u, v) + λ(u, v)L2(Ω) =
∫

Ω

{
fov +

n∑
i=1

fivxi

}
dx +

∫
Γ

hv dσ ∀v ∈ V,

u ∈ V

(5)

has one and only one solution, u, for any choice of the functions fi (i = 0, 1, . . . , n)

and h in suitable L p(Ω) spaces.
Finally we study the subsolutions of (3): by supposing u ∈ H1(Ω) such that

a(u, v) ≤
∫

Ω

{
fov +

n∑
i=1

fivxi

}
dx +

∫
Γ

hv dσ, ∀v ∈ V, v ≥ 0 in Ω,(6)

we prove an a priori inequality of the type

ess sup
Ω

u ≤ K1 max
Γo

u + K2‖u‖H1(Ω) + K3,

where K1 is a constant depending only on n and K2, K3 also depend on the
coefficients of the bilinear form a(., .), on the data fi (i = 0, 1, . . . , n), h and the
regularity of the part Γ of ∂Ω.

Therefore the present note may be considered as a sequel of [5], where the
set Ω was supposed bounded and the functions g, h defined on Γ were zero. In the
particular case Γ = ∅, that is Γo = ∂Ω, again we find the results of [2].
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2. Notations and hypotheses on the coefficients

Let Ω be an open subset ofRn; for simplicity we suppose n ≥ 3 (even if, with a few
changes, it would be possible to extend the results to the case n = 2). We refer, for
example, to [4], [6] for the definition of the spaces H1,p(Ω); in H1(Ω) := H1,2(Ω)

we put, by definition,

‖ux‖L2(Ω) :=
{

n∑
i=1

‖uxi ‖2
L2(Ω)

}1/2

,

where we assume as a norm, for instance, the quantity

‖u‖H1(Ω) :=
{
‖u‖2

L2(Ω)
+ ‖ux‖2

L2(Ω)

}1/2
.

Definition 1. Let p ≥ 1, δ > 0, f ∈ L p
loc(Ω); we define

ω( f, p, δ) := sup{‖ f ‖L p(E) : E measurable, E ⊂ Ω, meas E ≤ δ}

X p(Ω) := { f ∈ L p
loc(Ω) : ω( f, p, δ) < +∞ ∀δ > 0

}

X p
o (Ω) := { f ∈ X p(Ω) : lim

δ→0+ ω( f, p, δ) = 0
}
.

For further properties of these spaces see [2].
Suppose now aij ∈ L∞(Ω) (i, j = 1, 2, . . . , n),

∑
aij ti t j ≥ ν|t|2 ∀t ∈ Rn a.e.

in Ω, with ν positive constant. Except for further hypotheses, we suppose at least
bi, di ∈ Xn(Ω) (i = 1, 2, . . . , n), c ∈ Xn/2(Ω), g ∈ Xn−1(Γ).

If u ∈ H1(Ω), m ∈ R, B is a closed subset of Ω, we say that u ≤ m (u = m)

on B in the sense of H1(Ω) if there exists a sequence of real functions u j ∈
C1(Ω) ∩ H1(Ω)( j = 1, 2, . . . ) such that u j ≤ m (u j = m) in B for any j ∈ N
and lim j ‖u − u j‖H1(Ω) = 0.

3. Hypotheses on the boundary of Ω

Let us suppose that there exists an open set Ω1 ⊃ Ω with the following properties.
Let ∂Ω1 be “locally uniformly Lipschitz” (such a definition will be made precise
later). Furthermore we define

Γ := (∂Ω1) ∩ (∂Ω), Γo := (∂Ω)\(∂Ω1).

With these choices, if u ∈ H1(Ω), u = 0 on Γo in the sense of H1(Ω), and we
prolong u to be zero in Ω1\Ω, it turns out that u ∈ H1(Ω1) still (where we have
also denoted by u the prolonged function). Please note that, under our hypotheses,
while Γ is supposed sufficiently regular, the part Γo of the boundary of Ω may be
irregular.

Now we formulate the hypothesis on the regularity of ∂Ω1 (and therefore on Γ).
We suppose that there exist two positive numbers r, K such that for every point
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x ∈ ∂Ω1 it is possible to find an n-dimensional cube (with a suitable choice of the
cartesian axes) such as

Q(x, r) := {x ∈ Rn : |x − xi | < r, i = 1, 2, . . . , n
}

(7)

having the following properties. Let us denote by D the (n − 1)-dimensional cube

D := {y ∈ Rn−1 : |yi − xi | < r, i = 1, 2, . . . , n − 1
}

(8)

and suppose that there exists a function φ : D → R such that

φ(x1, x2, . . . , xn−1) = xn,(9)

Q(x, r) ∩ Ω1(10)

= {y ∈ Rn : (y1, y2, . . . , yn−1) ∈ D, yn < φ(y1, y2, . . . , yn−1)
}

Q(x, r) ∩ ∂Ω1(11)

= {y ∈ Rn : (y1, y2, . . . , yn−1) ∈ D, yn = φ(y1, y2, . . . , yn−1)
}

|φ(y′) − φ(y′′)| ≤ K |y′ − y′′| ∀y′, y′′ ∈ D.(12)

Let us consider now, instead of D, its subset (with 0 < δ ≤ 1)

Dδ := {y ∈ Rn−1 : |yi − xi | < δr, i = 1, 2, . . . , n − 1
}
.(13)

From (9), (12), (13) it follows that∣∣φ(y′) − xn

∣∣ ≤ K
∣∣y′ − y

∣∣ < K
√

n − 1δr ∀y′ ∈ Dδ,(14)

where we have put, for brevity, y := (x1, x2, . . . , xn−1) ∈ Rn−1. Now let us choose

δ := min
{
1/2, 1/(2K

√
n − 1)

}
(15)

so that from (14) it follows that∣∣φ(y′) − xn

∣∣ < r/2 ∀y′ ∈ Dδ.(16)

From now on, besides the cubes Q(x, r) defined in (7), we shall also consider the
n-dimensional parallepipeds defined as follows:

Qδ(x, r) := {y ∈ Rn : |yi − xi | < δr (i = 1, 2, . . . , n − 1), |yn − xn| < r
}
,

(17)

where δ is always defined by (15). Since we have supposed 0 < δ ≤ 1/2, it turns
out that

Q(x, δr) ⊂ Qδ(x, r) ⊂ Q(x, r).(18)

Please note that, while the function φ may change with the point x ∈ ∂Ω1 and the
cube Q(x, r), the constants r and K do not change (by hypothesis).

We can also remark that, if the preceding hypothesis is satisfied for some r > 0,
it is also satisfied if we replace r by any (positive) smaller number; therefore it is
possible to choose r as small as we please (it will be fixed suitably later). Under
these hypotheses, in almost every point of the boundary of Ω1 there exists the
normal unit vector to ∂Ω1, which we suppose is oriented towards the exterior
of Ω1. Such a normal unit vector will be denoted by N.
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Lemma 1. For any x ∈ Ω there exist two cubes Q(x, r), Q(x, θr) such that
x ∈ Q(x, r) and

‖u‖L2∗
(Q(x,r)∩Ω) ≤ (K5/r)‖u‖L2(Q(x,θr)∩Ω) + K5‖ux‖L2(Q(x,θr)∩Ω),

for any u ∈ V, where K5 and θ are constants depending only on K and n, not
depending on u nor on r, and 2∗ := 2n/(n − 2).

Proof. Let r be a positive number and consider a countable family of cubes

Qh = Q(xh, r) := {y ∈ Rn : |xhi − yi| < r (i = 1, 2, . . . , n)
}

(h = 1, 2, . . . )

(19)

such that

∪+∞
h=1 Qh = Rn, Qh ∩ Qk = ∅ if h �= k (h, k ∈ N).(20)

Furthermore let us suppose that

r = δr/
(
2
√

n
) = min

{
r/
(
4
√

n
)
, r/
[
4K
√

n(n − 1)
]}

,(21)

where r is the number connected with the regularity of ∂Ω1 (as introduced at the
beginning of this paragraph) and δ defined by (15). Let us denote by N1 the subset
of N containing the indices k ∈ N such that Qk ⊂ Ω, i.e.

N1 := {k ∈ N : Qk ⊂ Ω},
and, in a similar way, define

N2 := {k ∈ N : Qk ∩ Γo �= ∅, Qk ∩ Γ = ∅}
N3 := {k ∈ N : Qk ∩ Γ �= ∅}.

Since Ω = Ω ∪ Γ ∪ Γo and taking (20) into account, from these definitions it
follows that

Ω ⊂ (∪k∈N1 Qk) ∪ (∪k∈N2 Qk) ∪ (∪k∈N3 Qk).(22)

The cubes Qk (k ∈ N) will be treated in a different way if either k ∈ N1 or k ∈ N2

or k ∈ N3.
The simplest case occurs when Qk ⊂ Ω (case 1); in this case, if u ∈ V , the

restriction of u to Qk clearly belongs to H1(Qk), therefore we can directly apply
Lemma 2 of [3] to such a cube. If x belongs to one of such cubes Qk, the lemma
is proved with K5 = 2(3n−4)/(n−2), θ = 1.

Even the case 2, in which Qk ∩Γ = ∅, Qk ∩Γo �= ∅ is rather simple. According
to our hypotheses, if u ∈ V it follows that u = 0 on Γo in the sense of H1(Ω), so
we can prolong the definition of u to all of Qk defining it as equal to zero in Qk\Ω
(in fact by hypothesis we have (∂Ω) ∩ Qk ⊂ Γo). The function prolonged in this
way, still denoted by u, belongs to H1(Qk) and again we can apply to it Lemma 2
of [3]. So even in this case, if x belongs to the cube Qk , the lemma is proved with
the same constants as before.
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Only the case 3 remains, in which Qk ∩ Γ �= ∅. Choose a point xk ∈ Qk ∩ Γ

and consider the cube Q(xk, r) which exists according to the hypotheses on Γ at
the beginning of paragraph 3. Please note that the cube Q(xk, r) may be oriented
differently from the cube Q(xk, r), but from (18) and (21) it turns out that Qk ⊂
Q(xk, δr), whence

Qk ⊂ Qδ(xk, r) ⊂ Q(xk, r).(23)

Note also that, since xk ∈ Qk, each cube of the family {Qh}h∈N has a non-empty
intersection with at most a finite number of cubes of the family {Q(xk, r)}k∈N3 , and
conversely each cube of the family {Q(xk, r)}k∈N3 has a non-empty intersection
with at most a finite number of cubes of the family {Qh}h∈N.

More precisely, according to (21) we deduce what follows. If we fix h ∈ N, it
turns out that

Qh(xh, r) ∩ Q(xk, r) �= ∅,

at most for a finite number n of indexes k ∈ N3. Such a number n does neither
depend on the cube Qh = Qh(xh, r) we started from, nor on r and r, but only on
the ratio r/r (which, according to (21), depends only on n and K ). It follows that,
given any function f ∈ L1(Ω) (where we have defined Q̃k := Q(xk, r)),

∑
k∈N3

∫
Ω∩Q̃k

| f | dx =
∑
k∈N3

∑
h∈N

∫
Ω∩Q̃k∩Qh

| f | dx(24)

=
∑
h∈N


∑

k∈N3

∫
Ω∩Q̃k∩Qh

| f | dx


 ≤ n

∑
h∈N

∫
Ω∩Qh

| f | dx = n
∫

Ω

| f | dx.

Therefore, if u ∈ H1(Ω), we can apply Sobolev inequalities to the function u
and to the sets Ω1 ∩ Qδ(xk, r) instead of Ω1 ∩ Qk , by using the hypothesis on Γ

described before. Consider, in fact, the following change of variables:
{

Yi = xi + (yi − xi)/δ (i = 1, 2, . . . , n − 1)

Yn = xn − r + 2r(yn − xn + r)/[φ(y1, y2, . . . , yn−1) − xn + r],(25)

where x, r, φ were defined in paragraph 3 (hypothesis on Γ). It is clear that if
yn = xn − r is also Yn = xn − r, while if yn = φ(y1, y2, . . . , yn−1) it turns out that
Yn = xn +r , and if yi −xi = ± δr (i = 1, 2, . . . , n−1) it follows that Yi −xi = ± r.
We remark also that, by (16), if (y1, y2, . . . , yn−1) ∈ Dδ the denominator in the
second member of (25) is greater than r/2. Therefore, recalling (9), (10), (11), the
change of variables (25) transforms the set

Qδ(x, r) ∩ Ω1

= {y ∈ Rn : (y1, y2, . . . , yn−1) ∈ Dδ, xn − r < yn < φ(y1, y2, . . . , yn−1)
}

in the following:

Q̃(x, r) := {Y ∈ Rn : |Yi − xi | < r (i = 1, 2, . . . , n)
}
.
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We also note that the change of variables (25) is clearly invertible between these
two sets.

Taking into account the hypothesis on φ (Lipschitz continuity) and the change
of variables (25), it is easy to check that for almost all y′ ∈ D it turns out that∣∣∣∣∂Yn

∂yn

∣∣∣∣ ≤ 4,

∣∣∣∣∂Yn

∂yi

∣∣∣∣ ≤ 16K,

∣∣∣∣∂Yi

∂yi

∣∣∣∣ ≤ 1/δ, (i = 1, 2 . . . , n − 1),(26)

where K is the Lipschitz constant of φ and δ is defined by (15). We can therefore
apply Lemma 2 of [3] to the cube Q̃ := Q(x, r) and obtain

‖u‖L2∗
(Q̃) ≤ (K4/r)‖u‖L2(Q̃) + K4‖uY ‖L2(Q̃),(27)

where 2∗ := 2n/(n − 2), K4 is a constant depending only on n and we have
still denoted by u the function expressed in the new variables (25). By taking into
account the theorem of integration by substitution, Theorem 1.V of [4] and (26),
(27) we get

‖u‖L2∗
(Q̂∩Ω) ≤ (K5/r)‖u‖L2(Q̂∩Ω) + K5‖ux‖L2(Q̂∩Ω)(28)

in which we have put, for brevity, Q̂ := Qδ(x, r) and the constant K5 depends
only on K and n (note that δ, because of (15), depends on the same quantities).
Remembering (18) and (21), if x ∈ Qk , the lemma follows from (28) in this case
also, with θ = r/rδ = 2

√
n/δ. ��

The preceding inequalities lead us to the following proposition, which is well
known (see for example Theorem 5.I of [4] and the remark in paragraph 7, or [1]
Ch. 5). Nevertheless we think it may be useful to insert it, since with our method
it is possible to evaluate exactly the constants which appear in it.

Proposition. There exists a constant K6 depending on n, K and on the set Γ, such
that

‖u‖L2∗
(Ω) ≤ K6‖u‖H1(Ω) ∀u ∈ V,(29)

where we have defined 2∗ := 2n/(n − 2).

Proof. Let w := u‖u‖−1
H1(Ω)

, evidently it suffices to prove that

‖w‖L2∗
(Ω) ≤ K6.(30)

Let N1, N2, N3 be the subsets of N defined before. We have∫
Ω

|w|2∗
dx(31)

=
∑
k∈N1

∫
Ω∩Qk

|w|2∗
dx +

∑
k∈N2

∫
Ω∩Qk

|w|2∗
dx +

∑
k∈N3

∫
Ω∩Qk

|w|2∗
dx.

If k ∈ N1 or k ∈ N2 from Lemma 2 of [3] we deduce that

‖w‖L2∗
(Ω∩Qk) ≤ (K4/r)‖w‖L2(Ω∩Qk) + K4‖wx‖L2(Ω∩Qk),(32)
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if instead k ∈ N3 from (23) and (28) one gets

‖w‖L2∗
(Ω∩Qk) ≤ (K5/r)‖w‖L2(Ω∩Q̃k) + K5‖wx‖L2(Ω∩Q̃k),(33)

where Q̃k := Q(xk, r). Hence, also taking into account (24),

∑
k∈N1∪N2∪N3

‖w‖2∗
L2∗

(Ω∩Qk)
≤

∑
k∈N1∪N2∪N3

‖w‖2
L2∗

(Ω∩Qk)

≤ 2nK2
5

[(
1/r2)‖w‖2

L2(Ω)
+ ‖wx‖2

L2(Ω)

]
≤ 2nK2

5

[
1 + (1/r2)].

From this inequality and (31) we get at once (30), that is the assertion, with
K6 = {2nK2

5(1 + 1/r2)}1/2∗
. ��

4. Integral inequalities on Γ

Since in the bilinear form a(., .) we now also have an integral on Γ, we must
get some Sobolev-type inequalities suitable to treat it. It is sufficient to use again
Lemma 5.II of Gagliardo [4], where we put r = 1, m = n − 1, p = s, with
1 < s < n. As in [3], we directly follow the proof by Gagliardo, replacing Ω with
the cube Q(x, r) and supposing temporarily that u ∈ H1(Q(x, r)). With simple
calculations we get

{∫
Di

|u|s(n−1)/(n−s) dσ

}(n−s)/s(n−1)

(34)

≤ (K7/r)‖u‖Ls(Q(x,r)) + K8‖ux‖Ls(Q(x,r)),

where
{

K7 := 1 + 2(ns−2s+n)/(n−s),

K8 := 5s(n − 1)/(n − s)

and Di is any (n − 1)-dimensional face of the cube Q(x, r). But formula (34) is
not directly useful since we need to calculate the integral not on the face Di of the
cube, but on the “curved” intersection Γ∩ Q(x, r). Nevertheless, from the proof of
the lemma of Gagliardo we see that we can rewrite (34) in the more precise form

{∫
Di

sup
yi

|u|s(n−1)/(n−s) dσ

}(n−s)/s(n−1)

(35)

≤ (K7/r)‖u‖Ls(Q(x,r)) + K8‖ux‖Ls(Q(x,r)),

where we have put

sup
yi

|u| := sup{|u(y1, y2, . . . , yi−1, t, yi+1, . . . , yn)| : xi − r ≤ t ≤ xi + r}.
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By taking into account (35) and the definition of the surface integral, we deduce
that∫

Q(x,r)∩Γ

|u|s(n−1)/(n−s) dσ

=
∫

Di

|u(y1, y2, . . . , yn−1, φ(y1, y2, . . . , yn−1)|s(n−1)/(n−s)

×
√√√√1 +

n−1∑
i=1

(∂φ/∂yi)2 dy1dy2 . . . dyn−1(36)

≤
√

1 + (n − 1)K2

∫
Di

sup
yi

|u|s(n−1)/(n−s) dσ

≤
√

1 + (n − 1)K2
[
(K7/r)‖u‖Ls(Q(x,r)) + K8‖ux‖Ls(Q(x,r))

]s(n−1)/(n−s)
,

whence the conclusion immediately follows. ��
In the same context we can prove:

Lemma 2. Let g ∈ Xn−1(Γ), u, v ∈ H1(Ω). Then there exists a constant K9

depending on only g, n, K,Γ, such that

∣∣∣
∫

Γ

guv dσ

∣∣∣ ≤ K9‖u‖H1(Ω)‖v‖H1(Ω).(37)

Proof. The inequality may be proved by using (36) where we put s = 2. Recalling
(23) also, we have (where k ∈ N3, Q̂k := Qδ(xk, r), Q̃k := Q(xk, r) and 2̂ :=
(2n − 2)/(n − 2)):

∣∣∣∣
∫

Γ∩Q̂k

guv dσ

∣∣∣∣ ≤ ‖g‖Ln−1(Γ∩Q̃k)‖u‖L 2̂(Γ∩Q̃k)
‖v‖L 2̂(Γ∩Q̃k)

(38)

≤ K10‖g‖Ln−1(Γ∩Q̃k)

[
(1/r)‖u‖L2(Q̃k∩Ω) + ‖ux‖L2(Q̃k∩Ω)

]
× [(1/r)‖v‖L2(Q̃k∩Ω) + ‖vx‖L2(Q̃k∩Ω)

]

≤ K10ω(g, n − 1,
√

1 + (n − 1)K2(2r)n−1)

×
[
(1/r2)

(
‖u‖2

L2(Ω∩Q̃k)
+ ‖v‖2

L2(Ω∩Q̃k)

)
+ ‖ux‖2

L2(Ω∩Q̃k)
+ ‖vx‖2

L2(Ω∩Q̃k)

]
,

where K10 is a constant depending only on n, K7, K8 and therefore finally only
on n and K . Hence, by summing with respect to k in N3 and taking into account
(24) we get

∣∣∣∣
∫

Γ

guv dσ

∣∣∣∣ ≤ nK10ω
(

g, n − 1,
√

1 + (n − 1)K2(2r)n−1
)

(39)

×
[
(1/r2)

(
‖u‖2

L2(Ω)
+ ‖v‖2

L2(Ω)

)
+ ‖ux‖2

L2(Ω)
+ ‖vx‖2

L2(Ω)

]
,

whence the conclusion (37). ��
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5. Properties of the bilinear form a(., .)

The a priori inequalities of Sobolev type we have illustrated in the former paragraph
allow us to extend to our situation some properties of the bilinear form a(., .) already
proved by Stampacchia [6] for the Dirichlet problem in an open bounded set.

Theorem 1. Suppose that the hypotheses mentioned above are satisfied. Then the
bilinear form a(., .) defined by (2) is bounded on V × V, that is there exists
a constant K11 depending on the coefficients of a(., .), on n and on Γ, such that

|a(u, v)| ≤ K11‖u‖H1(Ω)‖v‖H1(Ω) ∀ u, v ∈ V.(40)

Proof. It is sufficient to give suitable upper bounds to the various terms of the
bilinear form a(., .) as defined in (2). We have

∣∣∣
n∑

i, j=1

∫
Ω

aijuxi vx j dx
∣∣∣ ≤ K12‖u‖H1(Ω)‖v‖H1(Ω),(41)

where K12 is a constant depending only on n and on max{‖aij‖L∞(Ω) : i, j =
1, 2, . . . , n}.

Now let Q(xk, r) be one of the cubes defined in (19), with k ∈ N1 ∪ N2. From
the Schwartz–Hölder inequality and Lemma 2 of [3] we have

∣∣∣∣∣
n∑

i=1

∫
Qk∩Ω

biuxi v dx

∣∣∣∣∣ ≤
n∑

i=1

‖bi‖Ln(Qk∩Ω)‖ux‖L2(Qk∩Ω)‖v‖L2∗
(Qk∩Ω)(42)

≤
n∑

i=1

‖bi‖Ln (Qk∩Ω)‖ux‖L2(Qk∩Ω)

[
(K4/r)‖v‖L2(Qk∩Ω) + K4‖vx‖L2(Qk∩Ω)

]

≤
n∑

i=1

‖bi‖Ln (Qk∩Ω)

[
‖ux‖2

L2(Qk∩Ω)
+ (K4/r)2‖v‖2

L2(Qk∩Ω)
+ K2

4‖vx‖2
L2(Qk∩Ω)

]

≤
n∑

i=1

ω(bi, n, (2r)n)
[
‖ux‖2

L2(Qk∩Ω)
+ (K4/r)2‖v‖2

L2(Qk∩Ω)
+ K2

4‖vx‖2
L2(Qk∩Ω)

]
,

where K4 is the constant of Lemma 2 of [3], which depends only on n.
Furthermore let Qδ(xk, r) be one of the parallelepipeds introduced by (17). It is

possible to write an inequality similar to (42) by applying (28) instead of Lemma 2
of [3]. So we get (where we put, for brevity, Q̂k := Qδ(xk, r)):

∣∣∣∣∣
n∑

i=1

∫
Q̂k∩Ω

biuxi v dx

∣∣∣∣∣ ≤ · · ·(43)

≤
n∑

i=1

ω
(
bi, n, (2r)n) [‖ux‖2

L2(Q̂k∩Ω)
+ (K5/r)2‖v‖2

L2(Q̂k∩Ω)
+ K2

5‖vx‖2
L2(Q̂k∩Ω)

]
.
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From (22), (23), (42), (43) we deduce at once that

∣∣∣
n∑

i=1

∫
Ω

biuxi v dx
∣∣∣(44)

≤
∑

k∈N1∪N2

∣∣∣
∫

Ω∩Qk

n∑
i=1

biuxi v dx
∣∣∣+ ∑

k∈N3

∣∣∣
∫

Ω∩Q̂k

n∑
i=1

biuxi v dx
∣∣∣

≤
n∑

i=1

ω
(
bi, n, (2r)n)

×
∑

k∈N1∪N2

[
K2

4‖vx‖2
L2(Qk∩Ω)

+ (K4/r)2‖v‖2
L2(Qk∩Ω)

+ ‖ux‖2
L2(Qk∩Ω)

]

+
n∑

i=1

ω
(
bi, n, (2r)n

)

×
∑
k∈N3

[
K2

5‖vx‖2
L2(Q̂k∩Ω)

+ (K5/r)2‖v‖2
L2(Q̂k∩Ω)

+ ‖ux‖2
L2(Q̂k∩Ω)

]
.

From (44) and (24), by recalling also the connection between r and r given by (21),
we easily deduce the following inequality:

∣∣∣
n∑

i=1

∫
Ω

biuxi v dx
∣∣∣(45)

≤ nK13

n∑
i=1

ω
(
bi, n, (2r)n

) [
(1/r2)‖v‖2

L2(Ω)
+ ‖ux‖2

L2(Ω)
+ ‖vx‖2

L2(Ω)

]
,

where K13 is a constant depending only on K4, K5 and therefore only on n and K .
In a similar way (it is sufficient to replace bi by di) we get

∣∣∣
n∑

i=1

∫
Ω

diuvxi dx
∣∣∣(46)

≤ nK13

n∑
i=1

ω(di, n, (2r)n)
[
(1/r2)‖u‖2

L2(Ω)
+ ‖ux‖2

L2(Ω)
+ ‖vx‖2

L2(Ω)

]
.

Consider now the term containing the coefficient c. If k ∈ N1 ∪ N2 we have

∣∣∣
∫

Ω∩Qk

cuv dx
∣∣∣ ≤ ‖c‖Ln/2(Ω∩Qk)‖u‖L2∗

(Ω∩Qk)
‖v‖L2∗

(Ω∩Qk)(47)
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(where 2∗ := 2n/(n − 2)). Taking into account Lemma 2 of [3], we get, from (47),

(48)
∣∣∣
∫

Ω∩Qk

cuv dx
∣∣∣

≤ ‖c‖Ln/2(Ω∩Qk)K2
4

[
(1/r)‖u‖L2(Ω∩Qk)

+ ‖ux‖L2(Ω∩Qk)

]
× [(1/r)‖v‖L2(Ω∩Qk) + ‖vx‖L2(Ω∩Qk)

]
≤ K2

4ω(c, n/2, (2r)n)

×
[
(1/r)2

(
‖u‖2

L2(Ω∩Qk)
+‖v‖2

L2(Ω∩Qk)

)
+‖ux‖2

L2(Ω∩Qk)
+‖vx‖2

L2(Ω∩Qk)

]
.

If, otherwise, k ∈ N3 we have (putting again, for brevity, Q̂k := Qδ(xk, r) and
recalling (23), (28)):

∣∣∣
∫

Ω∩Qk

cuv dx
∣∣∣ ≤
∫

Q̂k∩Ω

|cuv| dx(49)

≤ ω(c, n/2, (2r)n)K2
5

[
(1/r)‖u‖L2(Q̂k∩Ω) + ‖ux‖L2(Q̂k∩Ω)

]
×
[
(1/r)‖v‖L2(Q̂k∩Ω) + ‖vx‖2

L2(Q̂k∩Ω)

]
.

From (48), (49), by summing on the index k and proceeding as before (also take
into account (24)) we get the following inequality:∣∣∣∣

∫
Ω

cuv dx

∣∣∣∣(50)

≤ nK14ω(c, n/2, (2r)n)
[
(1/r2)

(
‖u‖2

L2(Ω)
+ ‖v‖2

L2(Ω)

)

+ ‖ux‖2
L2(Ω)

+ ‖vx‖2
L2(Ω)

]
,

where K14 depends only on n, K4, K5 and therefore only on n and K .
It remains to consider only the last term of the bilinear form a(., .), that is the

integral
∫
Γ

guv dσ . To this aim it is sufficient to apply (37), obtaining

∣∣∣
∫

Γ

guv dσ

∣∣∣ ≤ K9‖u‖H1(Ω)‖v‖H1(Ω).(51)

From (41), (45), (46), (50), (51) the conclusion follows. ��
Let us prove now the following result, analogous to Theorem 3.2 of [6]:

Theorem 2. Besides the hypotheses formulated in paragraph 2, let us suppose
that bi, di ∈ Xn

o(Ω), c ∈ Xn/2
o (Ω), g ∈ Xn−1

o (Γ) (i = 1, 2, . . . , n). Then there
exists a number λo depending on K and the coefficients of the bilinear form a(., .)

such that for any λ ≥ λo the bilinear form

a(., .) + λ(., .)L2(Ω)

is coercitive on V × V, i.e. there exists a positive constant K such that

a(u, u) + λ‖u‖2
L2(Ω)

≥ K‖u‖2
H1(Ω)

∀u ∈ V.
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Proof. We begin from the inequalities (45), (46), (50), (51) of Theorem 1. By
following a remark in paragraph 2, it is not a restriction to suppose that the number
r (which exists because of the hypothesis on Γ) is sufficiently small, so that

2nK13

n∑
i=1

ω
(
bi, n, (2r)n

)
< ν/8(52)

2nK13

n∑
i=1

ω
(
di, n, (2r)n

)
< ν/8(53)

2nK14ω(c, n/2, (2r)n) < ν/8(54)

2nK10ω(g, n − 1,
√

1 + (n − 1)K2(2r)n−1) < ν/8.(55)

This is possible, since (as we have seen) the constants K10, K13, K14 depend only
on n and the Lipschitz constant K . From the supposed uniform ellipticity we get

ν‖ux‖2
L2(Ω)

≤
n∑

i=1

∫
Ω

aijuxi ux j dx ∀u ∈ H1(Ω),(56)

and from (39), (45), (46), (50), (52), (53), (54), (55)

∣∣∣∣∣
∫

Ω

{ n∑
i=1

(bi + di)uxi u + cu2
}

dx +
∫

Γ

gu2 dσ

∣∣∣∣∣(57)

≤ (ν/2)‖ux‖2
L2(Ω)

+ (3ν/8r2)‖u‖2
L2(Ω)

∀u ∈ V.

From (56), (57) the conclusion follows with λo = (3ν/8r2) + ν/2 and K = ν/2.
��

Corollary. Suppose fo ∈ L2n/(n+2)(Ω), fi ∈ L2(Ω) (i = 1, 2, . . . , n), h ∈
L2−2/n(Γ), λ ≥ λo (see the preceding theorem). Then the boundary-value problem




a(u, v) + λ(u, v)L2(Ω) =
∫

Ω

{
fov +

n∑
i=1

fivxi

}
dx +

∫
Γ

hv dσ ∀v ∈ V,

u ∈ V

(58)

has one and only one solution.

Proof. Remembering Theorem 3.3 of Stampacchia [6] it is sufficient to prove that
the second member of (58) is an element of the dual of V , i.e. that there exists
a constant K15 such that

∣∣∣
∫

Ω

{
fov +

n∑
i=i

fivxi

}
dx +

∫
Γ

hv dσ

∣∣∣ ≤ K15‖v‖H1(Ω) ∀v ∈ V.(59)
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First of all, from the Hölder inequality follows

∣∣∣
∫

Ω

fov dx
∣∣∣ ≤ ‖ fo‖L2n/(n+2)(Ω)‖v‖L2n/(n−2)(Ω)(60)

∣∣∣
∫

Ω

n∑
i=i

fivxi dx
∣∣∣ ≤

n∑
i=1

‖ fi‖L2(Ω)‖vxi ‖L2(Ω).(61)

We can apply the proposition of paragraph 3, obtaining the existence of a constant
K6 such that

‖v‖L2n/(n−2)(Ω) ≤ K6‖v‖H1(Ω) ∀v ∈ V.(62)

Now consider the term
∫
Γ

hv dσ ; we have

∣∣∣
∫

Γ

hv dσ

∣∣∣ ≤ ‖h‖L2−2/n (Γ)‖v‖L(2n−2)/(n−2)(Γ) ∀v ∈ V.(63)

Therefore the assertion will be proved as soon as we show that there exists a constant
K16 such that

‖v‖L(2n−2)/(n−2)(Γ) ≤ K16‖v‖H1(Ω) ∀v ∈ V,(64)

or, more generally,

‖v‖Ls(n−1)/(n−s)(Γ) ≤ K16‖v‖H1,s(Ω) ∀v ∈ V, con 1 < s < n.(65)

This assertion is well known since it can be deduced, for example, from [1, Theo-
rem 5.22], or again from Theorem 5.I of Gagliardo [4] and the final remark (at
the end of [4]), which extends the results to unbounded domains. All the same we
report the proof for convenience of the reader and in order to explicitly calculate
the constants which appear.

If we put w := v‖v‖−1
H1,s(Ω)

, (65) is equivalent to

‖w‖Ls(n−1)/(n−s)(Γ) ≤ K16 .(66)

First of all it turns out that
∫

Γ

|w|s(n−1)/(n−s) dσ ≤
∑
k∈N3

∫
Γ∩Qk

|w|s(n−1)/(n−s) dσ(67)

≤
∑
k∈N3

∫
Γ∩Q̃k

|w|s(n−1)/(n−s) dσ,

where Q̃k := Q(xk, r) is one of the cubes introduced in paragraph 3. From (36) it
follows that

‖w‖Ls(n−1)/(n−s)(Γ∩Q̃k)
≤ K17

[
(1/r)‖w‖Ls(Ω∩Q̃k)

+ ‖wx‖Ls(Ω∩Q̃k)

]
,(68)
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where K17 depends only on K and on the constants K3 and K4, therefore again on
K and n. Recalling that ‖w‖H1,s(Ω) = 1 and that s < s(n − 1)/(n − s) (since 1 < s
by hypothesis), from (68) we get

‖w‖s(n−1)/(n−s)
Ls(n−1)/(n−s)(Γ∩Q̃k)

≤ ‖w‖s
Ls(n−1)/(n−s)(Γ∩Q̃k)

(69)

≤ 2s−1Ks
17(1 + 1/rs)‖w‖s

H1,s(Ω∩Q̃k)
.

From (69), by summing with respect to k and remembering (24), we get∫
Γ

|w|s(n−1)/(n−s) dσ ≤
∑
k∈N3

∫
Γ∩Q̃k

|w|s(n−1)/(n−s) dσ(70)

≤ 2s−1Ks
17(1 + 1/rs)

∑
k∈N3

‖w‖s
H1,s(Ω∩Q̃k)

≤ 2s−1nKs
17(1 + 1/rs)‖w‖s

H1,s(Ω)

= 2s−1nKs
17(1 + 1/rs),

so that (66) is proved, with K16 = {2s−1nKs
17(1 + 1/rs)}(n−s)/s(n−1). ��

6. A priori inequalities for subsolutions

The following result extends the theorem of [2]:

Theorem 3. Besides the hypotheses mentioned before, suppose that: p > n, p =
p(n − 1)/n, c ∈ Xn p/(n+p)(Ω), bi ∈ Xn

o(Ω), di ∈ X p(Ω), fi ∈ X p(Ω) (i =
1, 2, . . . , n), fo ∈ Xn p/(n+p)(Ω), g ∈ X p

o (Γ), h ∈ X p(Γ). Let u ∈ H1(Ω) such that

a(u, v) ≤
∫

Ω

{ fov +
n∑

i=1

fivxi } dx +
∫

Γ

hv dσ,(71)

for any v ∈ V, v ≥ 0 in Ω for which all the integrals in (71) make sense. Further-
more let us suppose that there exists a number m ≥ 0 such that max(u − m, 0)

∈ V.
Then there exist constants K18, K19, K20 such that

ess sup
Ω

u ≤ K18m + K19‖ max(u − m, 0‖H1(Ω) + K20,(72)

where the constant K18 depends only on n and p, while K19, K20 depend also on
the coefficients of the bilinear form a(., .), on the data fi (i = 0, 1, . . . , n), h and
on the regularity of the part Γ of the boundary of Ω.

Proof. Let t ≥ m and consider the function ut := max(u − t, 0). First of all, from
our hypotheses it turns out that clearly ut ∈ V and ut ≥ 0 in Ω. We want to insert ut

as v in (71) and to this aim we need to verify that, with this choice, all the integrals
that appear there make sense.

Define Ωt := {x ∈ Ω : u(x) > t}, Γt := {x ∈ Γ : u(x) > t}; we have

(t − m)2Hn(Ωt) ≤
∫

Ω

u2
m dx = ‖um‖2

L2(Ω)
,(73)
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where Hn denotes the ordinary Lebesgue measure in Rn . Immediately we can
verify that if t > m or t ≥ m > 0, Ωt has finite n-dimensional measure. Similarly
from (64) it follows that

(t − m )̂2Hn−1(Γt) ≤
∫

Γ

u2̂
m dx ≤ K 2̂

16‖um ‖̂2
H1(Ω)

(Ω),(74)

where Hn−1 denotes Hausdorff (n − 1)-dimensional measure. From (74) it clearly
follows that if t > m or t ≥ m > 0 the set Γt has finite (n − 1)-dimensional
measure.

From all these remarks and from the hypotheses on the functions fi (i =
0, 1, . . . , n) and h we get the reality of the integrals

∫
Ω

fout dx,
∫
Ω

∑n
i=1 fi(ut)xi dx

and
∫
Γ

hut dσ , as soon as t > m or t ≥ m with m > 0. Furthermore it turns out that

u(x) = ut(x) + t ∀x ∈ Ωt, uxi = (ut)xi a.e. in Ωt,(75)

whence

a(u, ut)(76)

=
∫

Ωt

{ n∑
i=1

aij(ut)xi (ut)x j +
n∑

i=1

[bi(ut)xi ut + di(ut + t)(ut)xi ] + c(ut + t)ut

}
dx

+
∫

Γt

g(ut + t) dσ = a(ut, ut)+t

{∫
Ωt

[
n∑

i=1

di(ut)xi +cut

]
dx+
∫

Γt

gut dσ

}
.

All the integrals in (76) make sense for the following reasons. The expression
a(ut, ut) makes sense since ut ∈ V and because of Theorem 1. If t = 0 there is
nothing else to prove, while if t > 0, as we have seen, Ωt and Γt have, respectively,
n-dimensional and (n − 1)-dimensional finite measure, so that all the integrals
in the last part of (76) exist. Therefore from (71), (76), taking into account the
uniform ellipticity of the operator, Hölder inequality and (29), (65) we get (where,
for brevity, we define α(t) := Hn(Ωt), γ(t) := Hn−1(Γt)):

ν‖ut‖2
H1(Ω)

≤ K6‖ fo‖Ln p/(n+p)(Ωt )
‖ut‖H1(Ω)[α(t)]1/2−1/p(77)

+
n∑

i=1

‖ fi‖L p(Ωt)‖ut‖H1(Ω)[α(t)]1/2−1/p + K16‖h‖L p(Γt )
‖ut‖H1(Ω)[α(t)]1/2−1/p

+ K6

n∑
i=1

[‖bi‖Ln(Ωt ) + ‖di‖Ln(Ωt )

] ‖ut‖2
H1(Ω)

+ K2
6‖c − ν‖Ln p/(n+p)(Ωt )

‖ut‖2
H1(Ω)

[α(t)]1/n−1/p

+ K2
16‖g‖L p(Γt )

‖ut‖2
H1(Ω)

[α(t)](p−n)/p(n−1)

+ t

[
n∑

i=1

‖di‖L p(Ωt ) + K6‖c − ν‖Ln p/(n+p)(Ωt )
+ K16‖g‖L p(Γt )

]

× ‖ut‖H1(Ωt )
[α(t)]1/2−1/p,
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whence, always in a similar way to [2],

{
ν − K6

n∑
i=1

[‖bi‖Ln(Ωt ) + ‖di‖Ln(Ωt )

]− K2
6‖c − ν‖Ln p/(n+p)(Ωt)

[α(t)]1/n−1/p

(78)

− K2
16‖g‖L p(Γt )

[γ(t)](p−n)/p(n−1)

}
‖ut‖H1(Ωt)

≤
{

K6‖ fo‖Ln p/(n+p)(Ωt )
+

n∑
i=1

‖ fi‖L p(Ωt) + K16‖h‖L p(Γt )

}
[α(t)](1/2−1/p)

+ t

[
n∑

i=1

‖di‖L p(Ωt ) + K6‖c − ν‖Ln p/(n+p)(Ωt )
+ K16‖g‖L p(Γt )

]
[α(t)]1/2−1/p.

Note that if t ≥ m we have

∫
Ωm

(u − m)2 dx ≥
∫

Ωt

(u − m)2 dx ≥ (t − m)2α(t),(79)

so that it turns out

α(t) ≤
‖um‖2

L2(Ωm )

(t − m)2
∀t > m.(80)

Analogously, always if t ≥ m,

∫
Γm

(u − m )̂2 dσ ≥
∫

Γt

(u − m )̂2 dσ ≥ (t − m )̂2γ(t),

whence

γ(t) ≤
‖um ‖̂2

L 2̂(Γm)

(t − m )̂2
∀t > m.(81)

Still following [2], now we put

δo := min{1, φ(bi, n, ν/(10K6)), φ(di, p, ν/(10K6)),(82)

φ
(
c − ν, n p/(n + p), ν/

(
10K2

6

))
(i = 1, 2, . . . , n)}

(where φ is defined as in [2], formula (7), in which, as usual, we assume by
definition inf ∅ := +∞)

δ1 := φ
(
g, p, ν/

(
10K2

16

))
(83)

to := m + max
{
‖um‖L2(Ωm)δ

−1/2
o , ‖um‖L 2̂(Γm)

δ
−1/̂2
1

}
.(84)
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From (80), (81), (84) we get

α(to) ≤
‖um‖2

L2(Ωm )

(to − m)2
≤ δo(85)

γ(to) ≤
‖um ‖̂2

L 2̂(Γm)

(to − m )̂2
.(86)

Taking into account also (82), (83), and Remark 2 of [2], if t ≥ to it follows that




n∑
i=1

‖bi‖Ln (Ωt) ≤ ν/(10K6)

n∑
i=1

‖di‖L p(Ωt ) ≤ ν/(10K6)

(‖c − ν‖Ln p/(n+p)(Ωt )
≤ ν/
(
10K2

6

)
‖g‖L p(Γt )

≤ ν/
(
10K2

16

)
,

(87)

so that, if t ≥ to, from (78), (87) we have

(88) (3ν/5)‖ut‖H1(Ωt )

≤
{

K6‖ fo‖Ln p/(n+p)(Ωt )
+

n∑
i=1

‖ fi‖L p(Ωt ) + K16‖h‖L p(Γt)

+ t

[ n∑
i=1

‖di‖L p(Ωt ) + K6‖c − ν‖Ln p/(n+p)(Ωt )

+ K16‖g‖L p(Γt )

]}
[α(t)]1/2−1/p.

Inequality (88) is formally equal to (23) of [2], therefore we can, from now on,
proceed in the same manner, obtaining the conclusion in the form

ess sup
Ω

u ≤ K18m + K19

[
δ−1/2

o ‖um‖L2(Ω) + δ
−1/̂2
1 ‖um‖H1(Ω)(89)

+ ω( fo, n p/(n + p), δo) +
n∑

i=1

ω( fi , p, δo) + ω(h, p, δ1)
]
,

where K18 is a constant depending only on n, p, while K19 depends also on K6

and K16. Note that if g = 0 it follows that δ1 = +∞ so that in this case the term
‖um‖H1(Ω) does not appear in the second member (as already happened in [2]). ��
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