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ABSTRACT. We prove some a priori inequalities in L () for subsolutions of elliptic
equations in divergence form, with Dirichlet’s boundary conditions, in unbounded
domains.

1. Introduction.

In an open subset 2 of R™, not necessarily bounded, we consider a linear uni-
formly elliptic second order operator in variational form with discontinuous coeffi-
cients, associated to the bilinear form

(1) a(u,v) = /{ Z AUz, Uz, + Z(biuxiv + d;juvy,) + cuv} dz
Q i=1

4,j=1

If one supposes that u € H'(Q) is a solution of the inequality
(2) a(u,v)g/{fov—&—Zfivxi}dx YoeCi), v>0inQ
Q i=1

one can consider the problem of determining the minimal hypotheses on the coeffi-
cients b;, d;, c of the bilinear form (1) and on the known functions f; (i =0, 1,...,n)
in order that the subsolution u is (essentially) bounded from above in €. Such a
problem was already studied e. g. in [2] and [3], where an inequality of the kind

(3) ess supau < max(0,maxw) + K {l|follovaey + 30 W fillogey) + Kallul 20
1=1

was proved, by supposing 2 bounded and f;, d; € LP(Q), f,, ¢ € LP/2(Q), p > n.

The aim of the present work is to extend these results by permitting first of all
that the set €2 is unbounded and by making more general hypotheses on the func-
tions fo, fi, bi, di, ¢ (i =1,2...,n). Finally, the constants in the a priori inequality
(3) are explicitly evaluated, differently from what happened in the previous works
[2] and [3].
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2. Notations and Hypotheses.

Let € be an open subset (bounded or unbounded) of R™. Let a;; € L*°(2)
(i,j =1,2,...,n), EZj:l aijtit; > v[t]? Vt € R™ a.e. in §, where v is a positive con-
stant. Let ¢ := max(c,0), ¢~ := min(c,0) and suppose that ¢t € L2/ ("+2)(Q))
for any Q' bounded, Q' C . Let us define the spaces

(4) XP(Q):={feLl (): w(fpd) <-+ooVs>0}

) XE(@) = {f € XP(Q) : lim w(£.p.6) = 0)

where

(6) w(f,p,0) :=sup{||f||lr(p) : E measurable, E C Q, measE < J}

Remark 1. If f € LT (Q) and we define, for k£ > 0,

loc

(7) &(f,p, k) := inf{measE : E measurable, £ C Q, ||fl|rrp) > k}
we have

(8) feXP(Q) ifandonlyif 3k, > 0 such that ¢(f,p, ko) >0
9) feX?(Q) ifandonlyif ¢o(f,p,k)>0 VE>0

Remark 2. If G is a measurable subset of Q such that meas G < ¢(f,p, k), then it
turns out || f|[Lr(q) < k. In fact, if not there would exist a subset G, of G with
measure positive but so small that

1l v, > K

which is contrary to the definition of ¢, since meas(G\G,) < measG. O

Remark 8. If 1 < ¢ < p it turns out XP(Q) C XI(9).
In fact, if £ C Q, measE <4, f € XP(Q) we have

FllLa(e) < 1f]lLe(m) (measE)P=D/P1 < w(f,p, §)5P~0)/Pa

whence
w(f,q,9) <w(f,p, 5)5(P—q)/pq 0

We denote by S the constant in the Sobolev inequality
gl r2n/ -2 (gny < SlgallL2®n) Vg € Co(R™)
As it is well known (see e.g. [4]), it is

(10) S = [n(n — 2)x] Y20 (n)Y/ T (n/2)" /"
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3. Main Result.

Theorem. Besides the hypotheses mentioned above, let us suppose
¢ e XEMP)(Q) b € XP(Q), d; € XP(Q), f; € XP(Q) (i =1,2,...,n),
fo € XmP/(HP)(Q) u € HL (Q), p>n,

(11) a(u,v) S/Q{fov—l—ifwxi}dx Yo € CL(Q), v >0 in Q.
i=1

Let us suppose furthermore that there exists a real nonnegative number m such
that max(u —m,0) € H(Q).

Then there exist constants Ky, Ky, K3, depending on the coefficients of a(.,.),
on n and p, such that

(12)
ess supou < Ki|[max(u —m,0)||z2q) + onp/(P=m) 1
+I{Q{SVW(fCH’n’p/(p + ?’L),Kg) + Zw(flap7 K3)}
i=1
where:

S is the Sobolev constant (10),

Ky = (4/3)m/ (=) 4 onp/(p—m) g 71/2

Kz = (35/n)[277/0=) 1],

K3 = min{1, ¢(b;,n,v/(6Sn)), ¢(d;, p,v/(6Sn)), p(c,np/(p + n),v/(65?))

(t=1,2,...,n)}

Proof. Let us remark, first of all, that if ¢ > m obviously it is also
ug := max(u — t,0) € H(Q). It is also easy to verify that (11) is fulfilled also by
nonnegative functions v € H}(£2) with bounded support. Therefore it is possible
to put in (11) v = u; provided ¢ > m. Let us denote for brevity

O :={zxeQ: ulz) >t}

By using Hoélder’s and Sobolev’s inequalities, and taking into account our previous
hypotheses, we deduce

zwwmamééawaw%m

t

L (Q24) H(Ut)xH%%my

’/ S bitig, g da| < Z/ () e] dz <SS 1]
Q=1 i=1" % i=1
/Zdiu(ut)m dx SZ/ |diut(ut)m|dx+tz/ |di (1), | d <
Q=1 i=1"5k i=1" Sk

< S lldillr o, (meas2) P77 (uy) ] |72, )+

i=1
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+ £ |ldil| Lo () (meas) =222 | (wy)o || L2 (0
=1

|/ ¢ uu dr| < lcuZlde +t | | u|dr <
Q Q (oN

< S| s ntn (g2, (meas€) PP () 4|72, )+

+ tSleT | puv/-m o, (measQe) P22 [ (ue)o | 120,

\/ Forr dz| < S| follpnpsonin (g, (measy) P22 (uy) 4| 12(q,)
Q

\/QZfi(ut)wi dz| < || fill oo, (measy) P22 (u), || 20, ) -
i=1 i=1
Therefore from (11) it follows easily
(13)  vl[(u)alF2(q,) <
<t il Loy + SlleT || Lavsenn )] (measQe) P=272P | (uy) || L2 (0, +
+ Sl ollpnrrmsn @) + iy I fillLr(a,)] (measQ) P=2/2P||(uy) || 120, +
+ 8 [0 il o) + iy il o o) (meas) P=/ T [[ (ue) o |[7 2 0, +
G2 || prrs it (2, (m€asQy) PP ()07 2,

By putting, for brevity, a(t) := measQ;, we get

(14) { s [Z illzran + 3 lldallzo e la()] o=/ ¢
=1 =1

n S||c|m/<n+p><m>[a<t>1<””W} }|<ut>z||mt) <

< |:S||f0||L"P/(n+:D)(Qt) + Z ||fi||Lp(Qt)} [a(t)) P22y
i=1
+ t[Z il Lo, + Slle™|

i=1

an/<n+p>(szt)] [a(t)]@—z)/zp

Let us remark that, when ¢t > m, we have

[ wempdoz [ (wemdo (e mPat)

Qm Q

2
(15) o) < @ g o
T (t—m)?
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Now we define (see (7))
(16) 50 = min {17 ¢ (bl7 n, V/(GSTL)) ) ¢ (diapa V/(GSTL)) )

o (c_,np/(n +p),u/(652)) ,(i=1,2, ,n)}

(17) by o= m 4 Iz

(please note that 6, > 0 because of our previous hypotheses and remark 1).
Then if t > t, we have

||Um||%2(g) _
(18) at) <af(t,) < m =do

therefore by the definition of ¢ and remark 2 we deduce

{ Yict billznen) < v/(69), i lldillLe,) < v/(65),

(19) "
||C ||L"P/(n+p)(gt) < l//(652)

From (15), (16), (18) it follows «(t) < 1, then from (14), (19) when ¢ > ¢, we get

(20) w/2)[[(ue)e]| L2 <

n

< [a(t)]P=2/2 [t<z ||di|| e, + S]le7|

i=1

an/<n+p>(gt)> +

n
S ol + 3 |fi||mmt>]

i=1

Let us denote, for brevity,

Ky = <2S/u>(2?_1 dillnen,y + S||c-||m/<n+m(gt0>)
(21)

K i= 25/0) (S o + Slflloesrvon o

and apply to (20) Holder’s and Sobolev’s inequalitites, thus obtaining

(22) uellzicn < (@2 [ugl| 2nsonn o) < [P/ (Kyt + Ks)
Now we follow a procedure of [1]. Put, for ¢t > ¢,,

(23) B(t) = [luellr ()

and note that it turns out g(t) = [

. «(s)ds, therefore

(24) B'(t)=—a(t) <0 ae. in [t,,+00)
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From (22), (24) we deduce the differential inequality
(25) B(t) < (Kt + Ks)[=F ()] 77/ ave. in [t, +00)

Suppose now, by contradiction, that 8(¢t) > 0 V¢t > ¢, (i.e., by definition of
B(t), ess supqu = +00). Then in (25) we can divide by B(t) thus obtaining

(26) —B ()[B()) T/ (PP > (Kt + Kg) TP/ (nptpn)

By integrating (26) from ¢, and t* > ¢, (suppose for the moment K4 > 0), we
obtain

@1)  Ka[B(to)] 0/ r e [ (e)) e e >

> (Kt* + KE‘)(p*n)/(anrp*n) — (Kato + K5)(P*”)/(”P+P*n)
In (27) we get a contradiction when t* tends to +o0, so it follows ess supgu < +00.

We can write again (27) with ¢, < t* < ess supqu; by letting ¢* tend to ess supqu
we deduce

(28) (K4ess supou + K5)(P*n)/(np+pfn) <

< (Kity + K5) 0=/ 00 70) 4 1 (1)) (0w

Please note that the constant K, is not greater than 2/3 because of (19). From
(28) by easy calculations we get

(29) ess supqu < (4/3)np/(p_n)HUto”Ll(Qto) +2mP/ (P 4 (3/2)[27P/ (P 1)K

whence, by recalling the definition of ¢, (given by (17)) and K5 (given by (21)) one
can write

(30)  ess supqu < 2"/ Py 4 [(4/3)7P/(Pm) 4 2"”/(1’*”)5;1/2]||um||L2(Q)+

+BS/W) 2 P S| fol| s i @,y + D il oy
i=1

Finally, by taking into account (18), the definition of d, (see (16)) and the functions
¢, w, we conclude

(31)  ess supqu < 2"P/ =My 4 [(4/3)"/ (=) 4 2R/ (0= 6 1/2) 4y || L2 o)+

+ (3S/v)[2"P/ P~ _1)[Sw(f,, np/(p +n),8,) + Z w(fi,p,00)]

with 4, given by (16). O
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Remark 4. If we suppose, besides the hypotheses of the preceding theorem, that
there exists ¢ > 1 such that u,, € L1(2), then we can write, instead of (15), (17)

(15) () < lluml| %, o (= m) ™0 Ve >m,

(17) to :=m + ||unL|‘Lq(Q)6gl/q
and by proceeding as before we arrive at the conclusion in the form

(31")  ess supqu < 2"P/ Py 4 [(4/3)7P/ (P71 4 2”1’/(”_”)5;1/‘1“|um||Lq(Q)+

n

+ (3S/v) 2"/ PN [Sw(fo,np/ (D + 1), 00) + Y w(fisp, 00)]

i=1
where §, is always given by (16).

Remark 5. Suppose, in the bilinear form af(.,.), that the coefficients d; and ¢~ be
identically zero. Then the constant K4 defined by the first of (21) vanishes, and by
integrating (25) we get, more simply,

(82)  ess supau < to + (np+p—n)/(p — n) Ky 0Py, ||/ r)

L2(Q
whence, by taking into account the definitions of ¢,, d,,..., and Young’s inequality,
we deduce
(33) ess supou < m + (551/2 + D[uml|z2 () + [np/(p — n)] K5

This inequality is of the same kind of (31), but the coefficient of m in it is now 1.
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