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Abstract. We prove some a priori inequalities in L∞(Ω) for subsolutions of elliptic

equations in divergence form, with Dirichlet’s boundary conditions, in unbounded
domains.

1. Introduction.

In an open subset Ω of Rn, not necessarily bounded, we consider a linear uni-
formly elliptic second order operator in variational form with discontinuous coeffi-
cients, associated to the bilinear form

(1) a(u, v) =
∫

Ω

{
n∑

i,j=1

aijuxi
vxj

+
n∑

i=1

(biuxi
v + diuvxi

) + cuv} dx

If one supposes that u ∈ H1(Ω) is a solution of the inequality

(2) a(u, v) ≤
∫

Ω

{fov +
n∑

i=1

fivxi
} dx ∀ v ∈ C1

o (Ω), v ≥ 0 in Ω

one can consider the problem of determining the minimal hypotheses on the coeffi-
cients bi, di, c of the bilinear form (1) and on the known functions fi (i = 0, 1, ..., n)
in order that the subsolution u is (essentially) bounded from above in Ω. Such a
problem was already studied e. g. in [2] and [3], where an inequality of the kind

(3) ess supΩu ≤ max(0,max
∂Ω

u) + K1{||fo||Lp/2(Ω) +
n∑

i=1

||fi||Lp(Ω)}+ K2||u||L2(Ω)

was proved, by supposing Ω bounded and fi, di ∈ Lp(Ω), fo, c ∈ Lp/2(Ω), p > n.

The aim of the present work is to extend these results by permitting first of all
that the set Ω is unbounded and by making more general hypotheses on the func-
tions fo, fi, bi, di, c (i = 1, 2..., n). Finally, the constants in the a priori inequality
(3) are explicitly evaluated, differently from what happened in the previous works
[2] and [3].
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2. Notations and Hypotheses.

Let Ω be an open subset (bounded or unbounded) of Rn. Let aij ∈ L∞(Ω)
(i, j = 1, 2, ..., n),

∑n
i,j=1 aijtitj ≥ ν|t|2 ∀t ∈ Rn a.e. in Ω, where ν is a positive con-

stant. Let c+ := max(c, 0), c− := min(c, 0) and suppose that c+ ∈ L2n/(n+2)(Ω′)
for any Ω′ bounded, Ω′ ⊂ Ω. Let us define the spaces

(4) Xp(Ω) := {f ∈ Lp
loc(Ω) : ω(f, p, δ) < +∞ ∀δ > 0}

(5) Xp
o (Ω) := {f ∈ Xp(Ω) : lim

δ→0+
ω(f, p, δ) = 0}

where

(6) ω(f, p, δ) := sup{||f ||Lp(E) : E measurable, E ⊂ Ω, measE ≤ δ}

Remark 1. If f ∈ Lp
loc(Ω) and we define, for k > 0,

(7) φ(f, p, k) := inf{measE : E measurable, E ⊂ Ω, ||f ||Lp(E) ≥ k}

we have

(8) f ∈ Xp(Ω) if and only if ∃ ko > 0 such that φ(f, p, ko) > 0

(9) f ∈ Xp
o (Ω) if and only if φ(f, p, k) > 0 ∀k > 0

Remark 2. If G is a measurable subset of Ω such that meas G ≤ φ(f, p, k), then it
turns out ||f ||LP (G) ≤ k. In fact, if not there would exist a subset Go of G with
measure positive but so small that

||f ||Lp(G\Go) > k

which is contrary to the definition of φ, since meas(G\Go) < measG. �

Remark 3. If 1 ≤ q < p it turns out Xp(Ω) ⊂ Xq
o (Ω).

In fact, if E ⊂ Ω, measE ≤ δ, f ∈ Xp(Ω) we have

||f ||Lq(E) ≤ ||f ||Lp(E)(measE)(p−q)/pq ≤ ω(f, p, δ)δ(p−q)/pq

whence
ω(f, q, δ) ≤ ω(f, p, δ)δ(p−q)/pq �

We denote by S the constant in the Sobolev inequality

||g||L2n/(n−2)(Rn) ≤ S||gx||L2(Rn) ∀g ∈ C1
o (Rn)

As it is well known (see e.g. [4]), it is

(10) S = [n(n− 2)π]−1/2Γ(n)1/nΓ(n/2)−1/n
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3. Main Result.

Theorem. Besides the hypotheses mentioned above, let us suppose

c− ∈ X
pn/(n+p))
o (Ω), bi ∈ Xn

o (Ω), di ∈ Xp
o (Ω), fi ∈ Xp(Ω) (i = 1, 2, ..., n),

fo ∈ Xnp/(n+p)(Ω), u ∈ H1
loc(Ω), p > n,

(11) a(u, v) ≤
∫

Ω

{fov +
n∑

i=1

fivxi} dx ∀v ∈ C1
o (Ω), v ≥ 0 in Ω.

Let us suppose furthermore that there exists a real nonnegative number m such
that max(u−m, 0) ∈ H1

o (Ω).
Then there exist constants K1, K2, K3, depending on the coefficients of a(., .),

on n and p, such that

ess supΩu ≤ K1||max(u−m, 0)||L2(Ω) + 2np/(p−n)m+

+K2{Sω(fo, np/(p + n),K3) +
n∑

i=1

ω(fi, p,K3)}

(12)

where:
S is the Sobolev constant (10),

K1 = (4/3)np/(p−n) + 2np/(p−n)K
−1/2
3 ,

K2 = (3S/ν)[2np/(p−n) − 1],
K3 = min{1, φ(bi, n, ν/(6Sn)), φ(di, p, ν/(6Sn)), φ(c−, np/(p + n), ν/(6S2))

(i = 1, 2, ..., n)}

Proof. Let us remark, first of all, that if t ≥ m obviously it is also
ut := max(u − t, 0) ∈ H1

o (Ω). It is also easy to verify that (11) is fulfilled also by
nonnegative functions v ∈ H1

o (Ω) with bounded support. Therefore it is possible
to put in (11) v = ut provided t ≥ m. Let us denote for brevity

Ωt := {x ∈ Ω : u(x) > t}

By using Hölder’s and Sobolev’s inequalities, and taking into account our previous
hypotheses, we deduce

ν||(ut)x||2L2(Ωt)
≤

∫
Ωt

aijuxi
(ut)xj

dx,

∣∣∣∣∣
∫

Ω

n∑
i=1

biuxi
ut dx

∣∣∣∣∣ ≤
n∑

i=1

∫
Ωt

|bi(ut)xi
ut| dx ≤ S

n∑
i=1

||bi||Ln(Ωt)||(ut)x||2L2(Ωt)
,

∣∣∣∣∣
∫

Ω

n∑
i=1

diu(ut)xi
dx

∣∣∣∣∣ ≤
n∑

i=1

∫
Ωt

|diut(ut)xi
| dx + t

n∑
i=1

∫
Ωt

|di(ut)xi
| dx ≤

≤ S
n∑

i=1

||di||Lp(Ωt)(measΩt)(p−n)/np||(ut)x||2L2(Ωt)
+
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+ t
n∑

i=1

||di||Lp(Ωt)(measΩt)(p−2)/2p||(ut)x||L2(Ωt),

|
∫

Ω

c−uut dx| ≤
∫

Ωt

|c−u2
t | dx + t

∫
Ωt

|c−ut| dx ≤

≤ S2||c−||Lnp/(n+p)(Ωt)(measΩt)(p−n)/np||(ut)x||2L2(Ωt)
+

+ tS||c−||Lnp/(p−n)(Ωt)(measΩt)(p−2)/2p||(ut)x||L2(Ωt),

|
∫

Ω

fout dx| ≤ S||fo||Lnp/(n+p)(Ωt)(measΩt)(p−2)/2p||(ut)x||L2(Ωt),

|
∫

Ω

n∑
i=1

fi(ut)xi dx| ≤
n∑

i=1

||fi||Lp(Ωt)(measΩt)(p−2)/2p||(ut)x||L2(Ωt).

Therefore from (11) it follows easily

(13) ν||(ut)x||2L2(Ωt)
≤

≤ t[
∑n

i=1 ||di||Lp(Ωt) + S||c−||Lnp/(n+p)(Ωt)](measΩt)(p−2)/2p||(ut)x||L2(Ωt)+

+ [S||fo||Lnp/(n+p)(Ωt) +
∑n

i=1 ||fi||Lp(Ωt)](measΩt)(p−2)/2p||(ut)x||L2(Ωt)+

+ S
[∑n

i=1 ||bi||Ln(Ωt) +
∑n

i=1 ||di||Lp(Ωt)(measΩt)(p−n)/np
]
||(ut)x||2L2(Ωt)

+

+S2||c−||Lnp/(n+p)(Ωt)(measΩt)(p−n)/np||(ut)x||2L2(Ωt)

By putting, for brevity, α(t) := measΩt, we get

(14)
{

ν − S

[ n∑
i=1

||bi||Ln(Ωt) +
n∑

i=1

||di||Lp(Ωt)[α(t)](p−n)/np+

+ S||c−||Lnp/(n+p)(Ωt)[α(t)](p−n)/np

]}
||(ut)x||L2(Ωt) ≤

≤
[
S||fo||Lnp/(n+p)(Ωt) +

n∑
i=1

||fi||Lp(Ωt)

]
[α(t)](p−2)/2p+

+ t

[ n∑
i=1

||di||Lp(Ωt) + S||c−||Lnp/(n+p)(Ωt)

]
[α(t)](p−2)/2p

Let us remark that, when t ≥ m, we have∫
Ωm

(u−m)2 dx ≥
∫

Ωt

(u−m)2 dx ≥ (t−m)2α(t)

i. e.

(15) α(t) ≤
||um||2L2(Ωm)

(t−m)2
∀t > m
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Now we define (see (7))

(16) δo := min
{
1, φ (bi, n, ν/(6Sn)) , φ (di, p, ν/(6Sn)) ,

φ
(
c−, np/(n + p), ν/(6S2)

)
, (i = 1, 2, ..., n)

}
(17) to := m +

||um||L2(Ω)

δ
1/2
o

(please note that δo > 0 because of our previous hypotheses and remark 1).
Then if t ≥ to we have

(18) α(t) ≤ α(to) ≤
||um||2L2(Ω)

(to −m)2
= δo

therefore by the definition of φ and remark 2 we deduce

(19)
{ ∑n

i=1 ||bi||Ln(Ωt) ≤ ν/(6S),
∑n

i=1 ||di||Lp(Ωt) ≤ ν/(6S),

||c−||Lnp/(n+p)(Ωt) ≤ ν/(6S2)

From (15), (16), (18) it follows α(t) ≤ 1, then from (14), (19) when t ≥ to we get

(20) (ν/2)||(ut)x||L2(Ωt) ≤

≤ [α(t)](p−2)/2p

[
t

( n∑
i=1

||di||Lp(Ωt) + S||c−||Lnp/(n+p)(Ωt)

)
+

+S||fo||Lnp/(n+p)(Ωt) +
n∑

i=1

||fi||Lp(Ωt)

]
Let us denote, for brevity,

(21)


K4 := (2S/ν)

( ∑n
i=1 ||di||Lp(Ωto ) + S||c−||Lnp/(n+p)(Ωto )

)
K5 := (2S/ν)

( ∑n
i=1 ||fi||Lp(Ωto ) + S||fo||Lnp/(n+p)(Ωto )

)
and apply to (20) Hölder’s and Sobolev’s inequalitites, thus obtaining

(22) ||ut||L1(Ωt) ≤ [α(t)](2+n)/2n||ut||L2n/(n−2)(Ωt) ≤ [α(t)]1+(p−n)/np(K4t + K5)

Now we follow a procedure of [1]. Put, for t ≥ to,

(23) β(t) := ||ut||L1(Ωt)

and note that it turns out β(t) =
∫ +∞

t
α(s) ds, therefore

(24) β′(t) = −α(t) ≤ 0 a.e. in [to,+∞)
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From (22), (24) we deduce the differential inequality

(25) β(t) ≤ (K4t + K5)[−β′(t)]1+(p−n)/np a.e. in [to,+∞)

Suppose now, by contradiction, that β(t) > 0 ∀t ≥ to (i.e., by definition of
β(t), ess supΩu = +∞). Then in (25) we can divide by β(t) thus obtaining

(26) −β′(t)[β(t)]−np/(np+p−n) ≥ (K4t + K5)−np/(np+p−n)

By integrating (26) from to and t∗ > to (suppose for the moment K4 > 0), we
obtain

(27) K4[β(to)](p−n)/(np+p−n) −K4[β(t∗)](p−n)/(np+p−n) ≥

≥ (K4t
∗ + K5)(p−n)/(np+p−n) − (K4to + K5)(p−n)/(np+p−n)

In (27) we get a contradiction when t∗ tends to +∞, so it follows ess supΩu < +∞.
We can write again (27) with to < t∗ < ess supΩu; by letting t∗ tend to ess supΩu
we deduce

(28) (K4ess supΩu + K5)(p−n)/(np+p−n) ≤

≤ (K4to + K5)(p−n)/(np+p−n) + K4[β(to)](p−n)/(np+p−n)

Please note that the constant K4 is not greater than 2/3 because of (19). From
(28) by easy calculations we get

(29) ess supΩu ≤ (4/3)np/(p−n)||uto
||L1(Ωto ) +2np/(p−n)to +(3/2)[2np/(p−n)−1]K5

whence, by recalling the definition of to (given by (17)) and K5 (given by (21)) one
can write

(30) ess supΩu ≤ 2np/(p−n)m + [(4/3)np/(p−n) + 2np/(p−n)δ−1/2
o ]||um||L2(Ω)+

+(3S/ν)[2np/(p−n)−1]

[
S||fo||Lnp/(p+n)(Ωto ) +

n∑
i=1

||fi||Lp(Ωto )

]
Finally, by taking into account (18), the definition of δo (see (16)) and the functions
φ, ω, we conclude

(31) ess supΩu ≤ 2np/(p−n)m + [(4/3)np/(p−n) + 2np/(p−n)δ−1/2
o ]||um||L2(Ω)+

+ (3S/ν)[2np/(p−n) − 1]
[
Sω(fo, np/(p + n), δo) +

n∑
i=1

ω(fi, p, δo)
]

with δo given by (16). �



A PRIORI INEQUALITIES IN L∞(Ω) IN UNBOUNDED DOMAINS 7

Remark 4. If we suppose, besides the hypotheses of the preceding theorem, that
there exists q ≥ 1 such that um ∈ Lq(Ω), then we can write, instead of (15), (17)

(15’) α(t) ≤ ||um||qLq(Ωm)(t−m)−q ∀t > m,

(17’) to := m + ||um||Lq(Ω)δ
−1/q
o

and by proceeding as before we arrive at the conclusion in the form

(31’) ess supΩu ≤ 2np/(p−n)m + [(4/3)np/(p−n) + 2np/(p−n)δ−1/q
o ]||um||Lq(Ω)+

+ (3S/ν)[2np/(p−n)−1]
[
Sω(fo, np/(p + n), δo) +

n∑
i=1

ω(fi, p, δo)
]

where δo is always given by (16).

Remark 5. Suppose, in the bilinear form a(., .), that the coefficients di and c− be
identically zero. Then the constant K4 defined by the first of (21) vanishes, and by
integrating (25) we get, more simply,

(32) ess supΩu ≤ to + (np + p− n)/(p− n) K
np/(np+p−n)
5 ||uto

||(p−n)/(np+p−n)
L2(Ω)

whence, by taking into account the definitions of to, δo, ..., and Young’s inequality,
we deduce

(33) ess supΩu ≤ m + (δ−1/2
o + 1)||um||L2(Ω) + [np/(p− n)]K5

This inequality is of the same kind of (31), but the coefficient of m in it is now 1.
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