Some Properties of the First Eigenvalue and the First Eigenfunction of Linear Second Order Elliptic Partial Differential Equations in Divergence Form.

Maurizio Chicco (Genova) (*)

Sunto. – Si studiano alcune proprietà del primo autovalore e delle autofunzioni delle equazioni differenziali alle derivate parziali ellittiche del secondo ordine, in forma variazionale e a coefficienti discontinui.

1. - Introduction.

The present work is, in a certain sense, a continuation of [1]. By a small change in a lemma contained there, I prove some results concerning the first eigenvalue of linear second order elliptic partial differential equations in variational form with discontinuous coefficients. For example:

i) If A is an open set contained in $\Omega \subset \mathbb{R}^n$ and different from Ω (in a proper sense), then it turns out

$$\lambda_1(A) < \lambda_1(\Omega)$$

where $\lambda_1(A)$, $\lambda_1(\Omega)$ denote the first eigenvalue of the equation concerning A, Ω respectively.

ii) With Ω fixed, the eigenfunction w_1 corresponding to the first eigenvalue λ_1 is unique (of course up to an arbitrary multiplicative constant).

For the sake of brevity I shall consider Dirichlet's problem only, but more general boundary problems could be studied as in [1].

^(*) This work was written while the author was a member of the «Centro di Matematica e Fisica Teorica del C.N.R.» at the University of Genova.

2. - Notations and hypotheses.

Let Ω be an open bounded connected set in \mathbb{R}^n , where it is supposed $n \geqslant 3$ for simplicity.

Let $H^1(\Omega)$, $H^1_0(\Omega)$ be the (real) Hilbert spaces obtained by completing $C^1(\overline{\Omega})$, $C^1_0(\Omega)$ respectively according to the norm

$$||u||_{H^1(\Omega)} = ||u||_{L_2(\Omega)} + \sum_{i=1}^n ||u_{x_i}||_{L_2(\Omega)}.$$

In $H_0^1(\Omega)$ an equivalent norm is the following:

$$\|u_x\|_{L_2(\Omega)} = \left\{\sum_{i=1}^n \|u_{x_i}\|_{L_2(\Omega)}^2\right\}^{\frac{1}{2}}.$$

For every function $u \in H^1_0(\Omega)$ the following inequality is satisfied

$$||u||_{L_{2n}(n-2)}(\Omega) \leqslant K_1 ||u_x||_{L_2(\Omega)}$$

where K_1 is a constant depending only on n (see e.g. [4], p. 487-488). If k is a real constant, $u \in H^1(\Omega)$ and B is a compact subset of $\overline{\Omega}$, we say that $u \leqslant k$ in B in the sense of $H^1(\Omega)$ if there exists a sequence

$$\{u_j\}_{j\in\mathbb{N}}\subset C^1(\overline{\varOmega}) \text{ such that: } u_j\leqslant k \text{ in } B\ (j=1,\,2,\,\ldots)$$
 and $\lim_j\|u-u_j\|_{H^1(\Omega)}=0.$

Let B again be a compact subset of $\overline{\Omega}$. We set

$$\operatorname{cap}_{\Omega} B = \inf \left\{ \|v\|_{H^1(\Omega)}^2 \colon v \in C^1(\overline{\Omega}), \ v \geqslant 1 \ \text{in} \ B \right\}.$$

Let G be any subset of $\overline{\Omega}$; we define the internal capacity of G with respect to Ω in the following way:

$$\operatorname{cap}_{i,\Omega} G = \sup \{ \operatorname{cap}_{\Omega} B \colon B \text{ compact, } B \subset G \}.$$

(See in [2] some properties of the capacity with respect to Ω and a comparison with the ordinary capacity.)

Finally let us suppose: $a_{ij} \in L_{\infty}(\Omega)$, $\sum_{i,j=1}^{n} a_{ij} t_i t_j \geqslant \nu |t|^2$ a.e. in Ω , ν is a positive constant, $b_i \in L_n(\Omega)$, $d_i \in L_p(\Omega)$, $c \in L_{p/2}(\Omega)$

$$(i, j = 1, 2, ..., n), p > n,$$

$$a(u, v) = \int_{\Omega} \left\{ \sum_{i,j=1}^{n} a_{ij} u_{x_i} v_{x_j} + \sum_{i=1}^{n} (b_i u_{x_i} v + d_i u v_{x_i}) + cuv \right\} dx.$$

From the previous hypotheses and known results (see e.g. [7]) $a(\cdot, \cdot)$ is a bilinear form on $H_0^1(\Omega) \times H_0^1(\Omega)$. Consider the Dirichlet problem

(2)
$$\begin{cases} a(u, v) + \lambda(u, v)_{L_2(\Omega)} = 0 & \forall v \in H_0^1(\Omega), \\ u \in H_0^1(\Omega). \end{cases}$$

Such a problem has only the trivial solution u = 0 in Ω when λ does not belong to a sequence $\{\lambda_i\}_{i \in N}$ of complex numbers which are called the eigenvalues of problem (2) (see [7], th. 3.4).

3. - Preliminary lemmata.

LEMMA 1. – Suppose $w \in H^1(\Omega)$, $w \leqslant 0$ in Ω , w not identically zero in Ω , $a(w, v) \leqslant 0$ for any $v \in H^1_0(\Omega)$, $v \geqslant 0$ in Ω . Then

$$\operatorname{ess}_{D}\sup w<0$$

for any compact subset D of Ω .

Proof. - See [1], corollary 1.

Let us consider now a slightly different version of Theorem 1 of [1].

LEMMA 2. - The following two conditions are equivalent:

- (a) For any $u \in H^1(\Omega)$ such that $u \leqslant 0$ on $\partial \Omega$ in the sense of $H^1(\Omega)$ and $a(u, v) \leqslant 0$ for all $v \in H^1_0(\Omega)$, $v \geqslant 0$ in Ω , it turns out $u \leqslant 0$ in Ω .
- (b) There exists (at least) one function $w \in H^1(\Omega)$ such that: $w \leqslant 0$ in Ω , $a(w,v) \leqslant 0$ for all $v \in H^1_0(\Omega)$, $v \geqslant 0$ in Ω , there exists a positive constant c_0 and a compact subset B of $\partial \Omega$ such that $w \leqslant -c_0$ in B in the sense of $H^1(\Omega)$ and $\operatorname{cap}_{\Omega} B > 0$.

PROOF. - It is nearly the same of [1] and I repeat it for readers' convenience only.

 $(a) \Rightarrow (b)$. Suppose $f \in C^1(\overline{\Omega})$, f < 0 on $\partial \Omega$. Consider the following Dirichlet problem:

(3)
$$\begin{cases} a(w, v) = 0, \\ w - f \in H_0^1(\Omega). \end{cases}$$

From hypothesis (a) such a problem has at most one solution w. But the Riesz-Fredholm theory is valid for it (see e.g. [7]), so the uniqueness of the solution w implies its existence. It is easy to verify that w satisfies condition (b) (see Lemma 4).

 $(b) \Rightarrow (a)$. Let $u \in H^1(\Omega)$, $u \leqslant 0$ on $\partial \Omega$ in the sense of $H^1(\Omega)$, $a(u, v) \leqslant 0$ for any $v \in H^1_0(\Omega)$, $v \geqslant 0$ in Ω ; let us show that in this case $u \leqslant 0$ in Ω .

Let us consider the function

$$w_k = \max(u + kw, 0)$$

where k is a real number and w is the function satisfying hypothesis (b). Put

$$\Omega(k) = \{x \colon x \in \Omega, \ w_k(x) > 0\},$$

$$k_0 = \inf\{k \colon w_k = 0 \text{ in } \Omega\}.$$

The result will be proved if we show that $k_0 \le 0$: suppose $k_0 > 0$ in order to find a contradiction. Consider a compact subset D contained in Ω ; from Lemma 1 it follows

$$\operatorname{ess}_{p}\sup w<0$$

and from [7] (par. 5)

$$\operatorname{ess}_{D} \sup u < + \infty$$
.

It follows that there exists a number h such that

Since D is arbitrary, we get

$$\lim_{k \to +\infty} \min \Omega(k) = 0.$$

Let us show now that, even if k_0 is finite, it turns out

(6)
$$\lim_{k \to k_0^-} \min \Omega(k) = 0.$$

In fact if (6) is not verified there would exist a subset E contained in Ω such that mis E>0, $u+k_0w=0$ in E, $u+k_0w\leqslant 0$ in Ω . From Lemma 1 applied to the function $u+k_0w$ it would follow $u+k_0w=0$ in Ω . That is $-u=k_0w$, whence $w\geqslant 0$ on $\partial\Omega$ in the sense of $H^1(\Omega)$, a contradiction because it is $w\leqslant -c_0$ in B and $\operatorname{cap}_\Omega B>0$ (hypothesis (b)). So (6) is true. Now suppose $0< k< k_0$, so that $w_k\geqslant 0$ in Ω , $w_k=0$ in $\Omega-\Omega(k)$, whence

(7)
$$a(u + kw, w_k) = a(w_k, w_k) \leq 0$$
.

From the assumptions on the coefficients and Hölder's inequality we get

(8)
$$v \| (w_k)_x \|_{L_2(\Omega(k))}^2 \leq \sum_{i=1}^n \| b_i + d_i \|_{L_n(\Omega(k))} \cdot \| w_k \|_{L_{2n/(n-2)}(\Omega(k))} \cdot \\ \cdot \| (w_k)_x \|_{L_2(\Omega(k))} + \| c \|_{L_{n/2}(\Omega(k))} \cdot \| (w_k)_x \|_{L_{2n/(n-2)}(\Omega(k))}^2 \cdot$$

From (1), (8) it follows

(9)
$$v \| (w_k)_x \|_{L_2(\Omega(k))}^2 \le K_1 \Big[\sum_{i=1}^n \| b_i + d_i \|_{L_n(\Omega(k))} + \| c \|_{L_{n/2}(\Omega(k))} \Big] \cdot \| (w_k)_x \|_{L_2(\Omega(k))}^2.$$

From (6) and (9) we deduce that if $k_0 - k$ is sufficiently small (with $k < k_0$) it turns out $(w_k)_x = 0$ in Ω , that is $w_k = 0$ in Ω , a contradiction. Therefore $k_0 = 0$.

LEMMA 3. – Let A be an open set contained in Ω . Then $H_0^1(A) = H_0^1(\Omega)$ if and only if $\operatorname{cap}_{i,A}(\partial A - \partial \Omega) = 0$.

REMARK. – The equality $H_0^1(A) = H_0^1(\Omega)$ must be understood in the sense that the following two conditions are satisfied:

(i) For any $\varphi \in H_0^1(A)$ the function

$$ilde{arphi}(x) = \left\{ egin{array}{ll} arphi(x) \ , & x \in A \ , \\ 0 \ , & x \in \Omega - A \end{array}
ight.$$

belongs to $H^1_0(\Omega)$. This is obviously true since $A \subset \Omega$.

(ii) For any $\psi \in H^1_0(\Omega)$ it turns out $\psi = 0$ on ∂A in the sense of $H^1_0(A)$.

PROOF. – Let us suppose $\operatorname{cap}_{i,A}(\partial A - \partial \Omega) > 0$. From the definition of $\operatorname{cap}_{i,A}(\partial A - \partial \Omega)$ there exists a compact set D such that:

 $D \subset \partial A - \partial \Omega$ (whence $D \subset \Omega$), cap D > 0. Let z be a function such that $z \in C_0^1(\Omega)$, z > 0 in D. Obviously it is z > 0 in D in the sense of $H^1(A)$ also, therefore $z \notin H^1_0(A)$. This proves that in this case $H^1_0(A) \neq H^1_0(\Omega)$.

Conversely suppose $\operatorname{cap}_{i,A}(\partial A - \partial \Omega) = 0$ and $v \in H^1_0(\Omega)$: in this

case we shall show that $v \in H_0^1(A)$.

In fact let $\{v_j\}_{j\in\mathbb{N}}$ be a sequence of functions such that:

$$v_j \in C^1_0(\Omega)$$
, $\lim_j \|v - v_j\|_{H^1(\Omega)} = 0$.

For any $\varepsilon > 0$, set

$$\Omega(\varepsilon, j) = \{x \colon x \in \overline{\Omega}, \ v_j(x) \geqslant \varepsilon\}, \qquad (j = 1, 2, ...).$$

Obviously $\Omega(\varepsilon,j) \subset \Omega$ so that $\Omega(\varepsilon,j) \cap \partial A$ are compact subsets of Ω . From the assumption $\operatorname{cap}_{i,A}(\partial A - \partial \Omega) = 0$ it follows

$$\operatorname{cap}_{A} (\Omega(\varepsilon, j) \cap \partial A) = 0$$
, $(j = 1, 2, ...)$.

Therefore there exist functions $g_i \in C^1(\overline{A})$ such that:

$$\begin{split} \|g_j\|_{H^1(A)} < \frac{1}{j} \,, \qquad g_j \leqslant 0 \ \ \text{in} \ \ \overline{A} \,, \qquad g_j \leqslant -v_j \ \ \text{in} \ \ \Omega(\varepsilon,j) \cap \partial A \\ (j=1,2,\ldots) \,. \end{split}$$

It turns out:

$$\lim_{j\to +\infty}\|v-v_j-g_j\|_{H^1(A)}=0\;,\qquad v_j+g_j\leqslant 0\;\;\mathrm{in}\;\;\partial A\cap \Omega(\varepsilon,j),$$

 $v_j + g_j \leqslant \varepsilon$ in $\partial A - \Omega(\varepsilon, j)$. That is $v_j + g_j \leqslant \varepsilon$ on ∂A (j = 1, 2, ...), which implies $v \leqslant \varepsilon$ on ∂A in the sense of $H^1(A)$. Since ε is arbitrary, it follows $v \leqslant 0$ on ∂A in the sense of $H^1(A)$. Similarly it can be proven that $v \geqslant 0$ on ∂A in the sense of $H^1(A)$; therefore $v \in H^1_0(A)$.

LEMMA 4. - For every open set Ω in \mathbb{R}^n it turns out

$$\operatorname{cap}_{\Omega}\partial\Omega>0$$
.

PROOF. - The result can be deduced from the following inequality:

(10)
$$\min \Omega < \left[\frac{\|v\|_{H^{1}(\Omega)}}{k} \right]^{2} + \left[\frac{K_{1}\|v\|_{H^{1}(\Omega)}}{1-k} \right]^{2n/(n-2)}$$

valid for every real number k such that 0 < k < 1 and for every function $v \in C^1(\overline{\Omega})$ such that 0 < v < 1 in $\overline{\Omega}$, v = 1 on $\partial \Omega$.

Let us prove (10). Choose k and v as before and set

$$\Omega(k) = \{x \colon x \in \overline{\Omega}, \ v(x) \geqslant k\}, \qquad 2^* = 2n/(n-2).$$

It turns out:

(11)
$$||v||_{\mathcal{H}^{1}(\Omega)}^{2} \geqslant \int_{\Omega} v^{2} dx \geqslant \int_{\Omega(k)} v^{2} dx \geqslant k^{2} \operatorname{mis} \Omega(k)$$
.

Besides obviously $1-v\in C^1(\overline{\Omega})\cap H^1_0(\Omega)$; so we can apply (1) to the function 1-v. We find

$$(12) \|1-v\|_{L_{2}^{\bullet}(\Omega)} \leqslant K_{1} \|(1-v)_{x}\|_{L_{2}(\Omega)} = K_{1} \|v_{x}\|_{L_{2}(\Omega)} \leqslant K_{1} \|v\|_{H^{1}(\Omega)}.$$

From (12) it follows

(13)
$$(1-k)^{2^{\bullet}} \min \left[\Omega - \Omega(k) \right] \leqslant \int_{\Omega - \Omega(k)} (1-v)^{2^{\bullet}} dx \leqslant \left[K_1 \| v \|_{H^1(\Omega)} \right]^{2^{\bullet}}.$$

From (11), (13) finally

$$\operatorname{mis} \varOmega = \operatorname{mis} \varOmega(k) + \operatorname{mis} \left[\varOmega - \varOmega(k) \right] \leqslant \left[\frac{\|v\|_{\mathbf{H}^1(\Omega)}}{k} \right]^2 + \left[\frac{K_1 \|v\|_{\mathbf{H}^1(\Omega)}}{1-k} \right]^{2^*},$$

that is (10). From it and from the definition of capacity with respect to Ω the thesis of the present lemma can easily be deduced.

4. - The first eigenvalue.

Let us denote by $\lambda_1(\Omega)$ the eigenvalue of problem (2) having maximum real part.

From the results of [1] $\lambda_1(\Omega)$ is real. Suppose A is an open set contained in Ω and consider the analogous of problem (2) in A:

(14)
$$\begin{cases} a(z, v) + (z, v)_{L_2(A)} = 0 & \forall v \in H_0^1(A), \\ z \in H_0^1(A). \end{cases}$$

Denote by $\lambda_1(A)$ the eigenvalue of problem (14) having maximum real part.

THEOREM 1. – It turns out $\lambda_1(A) \leqslant \lambda_1(\Omega)$.

A necessary and sufficient condition in order that $\lambda_1(\Omega) = \lambda_1(A)$ is

$$\operatorname{cap}_{i,A}(\partial A - \partial \Omega) = 0.$$

PROOF. - The first inequality can be deduced in the following way.

From [1] (Theorem 2) we get

$$\lambda_1(\varOmega) = -\sup \left\{ \inf_{\substack{v \in H_0^1(\varOmega) \\ v \geq 0}} \frac{a(w,v)}{(w,v)_{L_2(\varOmega)}} \colon w \in H^1(\varOmega), \, w > 0 \ \text{ in } \ \varOmega \right\}.$$

If follows that if $\lambda > \lambda_1(\Omega)$ there exists (at least) a function $z \in H^1(\Omega)$ such that:

$$z<0 \text{ in } \Omega, \ a(z,v)+\lambda(z,v)_{L_2(\Omega)}<0 \text{ for any } v\in H^1_0(\Omega), \ v>0 \text{ in } \Omega.$$

Since $A \subset \Omega$, it turns out obviously $a(z, v) + \lambda(z, v)_{L_2(A)} < 0$ for any $v \in H_0^1(A)$, v > 0 in A. So from [1] (Theorem 1 and Corollary 2) neither λ nor the numbers greater than λ are eigenvalues of problem (1).

It follows $\lambda_1(A) < \lambda$ and therefore $\lambda_1(A) \leqslant \lambda_1(\Omega)$.

Let us prove now that if $\operatorname{cap}_{i,A}(\partial A - \partial \Omega) > 0$ then $\lambda_1(A) < \lambda_1(\Omega)$. Denote by $w_1 \in H^1_0(\Omega)$ an eigenfunction corresponding to the eigenvalue $\lambda_1(\Omega)$: it turns out

(15)
$$a(w_1, v) + \lambda_1(\Omega)(w_1, v)_{L_0(\Omega)} = 0, \quad \forall v \in H_0^1(\Omega).$$

From [5] (Theorem 6.1) w_1 can be chosen such that $w_1 \leqslant 0$ in Ω and therefore (Lemma 1) $w_1 < 0$ in every compact subset D of Ω . Since by hypothesis $\operatorname{cap}_{i,A}(\partial A - \partial \Omega) > 0$, there exists a compact subset B of $\partial A - \partial \Omega$ (and of Ω) such that $\operatorname{cap}_A B > 0$.

We can apply Lemma 2 to the open set A.

In fact from (15) we get

(16)
$$a(w_1, v) + \lambda_1(\Omega)(w_1, v)_{L_2(A)} = 0, \quad \forall v \in H_0^1(A),$$

and $w_1 < 0$ in B with $\operatorname{cap}_A B > 0$. Since w_1 is continuous in Ω (see [7]), we can say more precisely that $w_1 \le -c_0$ in B in the sense of $H^1(\Omega)$, with c_0 a positive constant. From Lemma 2 (in the sense $(b) \Rightarrow (a)$) it follows that neither $\lambda_1(\Omega)$ nor the numbers greater than $\lambda_1(\Omega)$ are eigenvalues of problem (15).

It remains to show that if $\operatorname{cap}_{i,A}(\partial A - \partial \Omega) = 0$ then $\lambda_1(\Omega) = \lambda_1(A)$. To this purpose it is sufficient to observe that in this case from Lemma 3 it is $H^1_0(A) = H^1_0(\Omega)$, so that $w_1 \in H^1_0(A)$ and w_1 is an eigenfunction. From (16) it follows that $\lambda_1(\Omega)$ is an eigenvalue for problem (14), whence $\lambda_1(\Omega) \geqslant \lambda_1(A)$ and, from what we proved previously, $\lambda_1(\Omega) = \lambda_1(A)$.

5. - Uniqueness of the first eigenfunction.

THEOREM 2. – The linear space of the eigenfunctions corresponding to the first eigenvalue $\lambda_1(\Omega)$ has dimension 1.

PROOF. – For the sake of contradiction let us suppose that there exist two linearly independent eigenfunctions $w_1, \hat{w}_1 \in H^1_0(\Omega)$:

(17)
$$\begin{cases} a(w_1, v) + \lambda_1(\Omega)(w_1, v)_{L_2(\Omega)} = 0, \\ a(\widehat{w}_1, v) + \lambda_1(\Omega)(\widehat{w}_1, v)_{L_2(\Omega)} = 0 \end{cases} \quad \forall v \in H_0^1(\Omega).$$

Then it is possible to find a linear combination $z=c_1w_1+c_2\hat{w}_1$ such that $\{x\colon x\in\Omega,\ z(x)>0\}$ and $\{x\colon x\in\Omega,\ z(x)<0\}$ are non void open sets (in fact z is a continuous function in Ω). Let S be an open ball such that $\bar{S}\in\{x\colon x\in\Omega,\ z(x)<0\}$.

Put $A = \Omega - \bar{S}$; it is easy to verify that $\operatorname{cap}_{A} \bar{S} > 0$.

Besides, from the already used Theorem 6.1 of [5], there exists an eigenfunction negative in Ω : we can suppose that such an eigenfunction coincides with w_1 . So it is possible to apply Lemma 2 to the open set A in the sense $(b) \Rightarrow (a)$: in fact it is $w_1 < 0$ in \overline{S} , $\operatorname{cap}_A \overline{S} > 0$, $z \le 0$ on ∂A in the sense of $H^1(A)$, $a(z, v) + \lambda(\Omega)(z, v)_{L_2(A)} = 0 \ \forall v \in H^1_0(A)$.

From Lemma 2 we conclude that $z \le 0$ in A, a contradiction since we supposed $\{x: x \in \Omega, z(x) > 0\} \neq \emptyset$.

About the other eigenfunctions, a simple remark is the following.

PROPOSITION. – Let w be any eigenfunction in Ω corresponding to a real eigenvalue λ .

Then the set $\{x\colon x\in\Omega,\ w(x)\neq0\}$ has a finite number of connected components.

PROOF. - From the hypotheses we get

(18)
$$\begin{cases} a(w,v) + \lambda(w,v)_{L_2(\Omega)} = 0 & \forall v \in H_0^1(\Omega), \\ w \in H_0^1(\Omega). \end{cases}$$

Let A be a nonempty connected component of $\{x: x \in \Omega, w(x) \neq 0\}$. Remembering the continuity of w in Ω , it turns out w = 0 on ∂A in the sense of $H^1(A)$.

If we set

$$w_{A} = \begin{cases} w & \text{in } A \\ 0 & \text{in } R^{n} - A \end{cases}$$

it follows $w_{\mathbf{A}} \in H^1_{\mathbf{0}}(A)$.

So we can put $v = w_A$ in (18) obtaining

(19)
$$a(w_A, w_A) + \lambda(w_A, w_A)_{L_2(A)} = 0.$$

From (19), (1) and Hölder's inequality we find

$$(20) \quad \nu \| (w_A)_x \|_{L_2(A)}^2 \leqslant K_1 \Big[\sum_{i=1}^n \| b_i + d_i \|_{L_n(A)} + \\ + K_1 \| c \|_{L_{n/2}(A)} + |\lambda| K_1 (\operatorname{mis} A)^{2/n} \Big] \| (w_A)_x \|_{L_2(A)}^2 .$$

From (20) it follows that the measure of A cannot be too small, because otherwise it would be $w_x = 0$ in A, a contradiction.

This is sufficient to conclude that the open sets like A are in a finite number.

In the autoadjoint case (i.e. if $a_{ij} = a_{ji}$, $b_i = d_i$, for i, j = 1, 2, ..., n) further results can be found in [6].

REFERENCES

- [1] M. Chicco, Principio di massimo generalizzato e valutazione del primo autovalore per problemi ellittici del secondo ordine di tipo variazionale, Ann. Mat. Pura Appl. (4), 87 (1970), pp. 1-10.
- [2] M. CHICCO, Confronto tra due modi di definire le diseguaglianze per le funzioni di $H^{1,p}(\Omega)$, Boll. Un. Mat. Ital. (4), 4 (1971), pp. 668-676.
- [3] R. COURANT D. HILBERT, Methods of mathematical physics, vol. 2, Interscience, New York, 1963.
- [4] H. FEDERER W. H. FLEMING, Normal and integral currents, Ann. of Math. (2), 72 (1960), pp. 458-520.
- [5] M. G. Krein M. A. Rutman, Linear operators leaving invariant a cone in a Banach space, Amer. Math. Soc. Transl. (1), 10 (1962), pp. 199-325.
- [6] M. G. Platone Garroni, Su alcune proprietà degli insiemi nodali delle autofunzioni di operatori ellittici del secondo ordine autoaggiunti a coefficienti discontinui, Ricerche Mat., 19 (1970), pp. 258-268.
- [7] G. STAMPACCHIA, Le problème de Dirichlet pour les équations elliptiques du second ordre à coefficients discontinus, Ann. Inst. Fourier (Grenoble), 15 (1965), pp. 189-258.

Pervenuta alla Segreteria dell' U. M. I. il 18 ottobre 1971