Generalized Maximum Principle for
Divergence Form Elliptic Equations in
Unbounded Domains

Dedicated to the memory of prof. Guido Stampacchia.

Abstract. — In this note I extend some previuos results concerning a generalized maxi-
mum principle for linear second order elliptic equations in divergence form, to the case of
unbounded domains.

1. — Introduction

In two previous works ([1], [2]) I have studied a generalized maximum principle
for linear second order elliptic partial differential equations in divergence form and
in bounded domains. In particular I have proved that if there exists a positive
supersolution w in €2, then every supersolution non negative on 0f) is also non
negative in €2, and conversely.

The aim of the present note is to extend, at least partially, these results to the case
in which the domain €2 in R" is unbounded. In this situation the complete continuity
of the immersion of H'(Q2) in L?(Q) is no longer true, so that many of the proofs
already used in [1], [2] must be completely changed.

2. — Notations and hypotheses

Let © be an open connected subset of R™, not necessarily bounded (for simplicity
we suppose n > 3, although the results could be easily extended to the case n = 2).
We refer, for example, to [5], [8] for the definition of the spaces HP(Q), H!?(Q);
in H(Q) := H“*(Q) we put, by definition,
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where we assume as a norm, for instance, the quantity

n 1/2
lulliey = {11ullEae + D e, 2oy }
j=0

Definition 1. Let p>1, § >0, f € L (Q); we define

loc

w(f,p,0) = sup{||f||zr(r) : £ measurable, £ C €2, meas &/ < 0}
XP(Q) == {f € () w(f.p.6) < +o0 V6 > 0}
Xo(@) = {f e X*(Q): lim w(f,p.0) =0}
For further properties of these spaces see [3].

Suppose now a;; € L¥(Q) (i, = 1,2,...n), Y21 aitit; > v|t]> vt € R", with v

a positive constant; b;, d; € X?(Q), p>n (i =1,2,...,n), c € X??(Q). Then we

define . .
a(u,v) == / { Z ijUy, Vg, + Z(biuwiv + diuvg,) + cuv} dx
@ i=1

ij=1
We note that this expression, for the hypotheses on the coefficients and Theorem 1
of [3], is a bilinear form on H!(Q) x H}(Q).

3. — Preliminary lemmata

Lemma 1. Suppose w € H. (Q) such that w, € X™(Q) and ess infqw > 0. If
u € HY(Q) it turns out u/w € HX(Q) and

lw/wlm @) < Killullm e (1)
where Ky is a constant depending on n, ess infow and w(w,,n,1).

Proof. It is not a restriction to suppose u € C}() since this space is dense in H}(2)
by definition (provided the constant K does not depend on the support of u). Let
Q@ be a cube in R", with side length 1. First of all we have trivially

[/ w]|r20nq) < (ess infow) ™ [|ul|r2(ng) (2)
As what concerns the derivatives, it turns out
()W), = Ug, /W — Uy, Jw?
and therefore

[(w/w)z||L2(ng) <
< (ess ianw)’lHuxHLz(mQ) + (ess infgw)’ZHumeLz(mQ) (3)

We now use Holder and Sobolev inequalities (in the form of Lemma 2 of [4])

HuwacH%?(mQ) < |’u"%2*(QOQ)HUJ$H%”(QHQ) <

< 2K, [HUHZﬁ(mQ) + HUxH%%mQ)} waH%n(mQ) (4)



where 2* := 2n/(n — 2) and K> is the constant of Lemma 2 of [4] (which depends
only on n).

Let us consider now a family of cubes {Q;} ey with side length 1 such

that Q;NQ; = 0 when i # j and U;;O‘fQ_J = R"™. Let us rewrite (2) by replacing @) by
(); and sum with respect to j (the function u can be defined equal to zero outside
). By remembering that by hypothesis it is w, € X"(Q2), we get

w720y < 2Kow(wa,n, 1) [[[ull72q + [Juallz2 0] ()

From (2), (3), (5) we easily reach the assertion (1). O

The following lemma may be understood as a partial extension of Theorem 1 of [1]
to the case of unbounded domains; the proof also is similar but it must be adapted
to the new situation.

Lemma 2. Suppose that the hypotheses listed in Section 2 are verified, and further-
more: there exists a function w € L>(Q) N H.(Q) such that ess infow > 0, w, €
X2(Q), and w is a solution of the inequality a(w,v) > 0 Yv € H}(Q), v > 0
in Q. Then if u € H'(Q) is such that u < 0 on 0Q in the sense of H'(Q)) and
a(u,v) <0 Vo e HXQ), v >0, it turns out u < 0 in Q.

Proof. It is not a restriction to suppose, for simplicity, that ess infow = 1. In order
to reach the conclusion, suppose by contradiction that m := ess supou > 0. Since
w € L*() by hypothesis, for any k& > 0 sufficiently small it is ess supg(u—kw) > 0.
Define now

ko :=sup{k € R : ess supqg(u — kw) > 0}

I state that
lim meas{zx € Q: u(x) — kw(z) >0} =0 (6)
k—ky

This is obvious if k£, = +o0; if k, € R it turns out

lim meas{x € Q: u(z) — kw(x) >0} =
k—ko

=meas{z € Q: u(z) — k,w(z) = 0} (7)

(In fact note that, by definition of k,, it is meas{z € Q : u(z) — kw(z) > 0} =0 if
k > k,). But the function u — k,w is solution of the inequality

a(u — k,w,v) <0Vv € HYQ), v>0in

If it were meas{z € Q : u(x)—kw(x) = 0} > 0, since it is also clearly u(z)—k,w(x) <
0 a.e. in €2, we should have u — k,w = 0 in © by Corollary 1 of [1] (clearly valid
also for unbounded domains). This is impossible since w ¢ H} (), therefore (7) and
then (6) are proved.

We now want to use max{u — kw, 0} as a test function, with 0 < k < k,, therefore
we need to prove that this (non negative) function belongs to H}(Q). For simplicity
we consider only the case k = 1, i. e. we prove that max{u — w,0} € H}(Q) (this



is not a restriction). Define u™ := max{u,0}; since by hypothesis u € H*(Q2) and
u < 0 on 09 in the sense of H'(), it is easy to verify that v € H!(Q). Let
{u;}jen be a sequence in C}(£2) such that lim; |[ut — u;|| g1 () = 0 and define w; :=
max{u; —w,0}; since by hypothesis w € H. (), we havew; € H}(Q)(j = 1,2,...).
Define A; := {z € Q: wu;(z) > 1}, it turns out w;(x) = 0 in Q\A; (since w > 1 in
), therefore

(@)l 22(0) < [[(w))elL2() + [[wel|r2a;) <
< [(uj)el|r200) + w(ws, 2, measAj) (8)

and also trivially
[ 2@ < lujllzz@) (G=1,2,...) (9)

Furthermore, since

max{u — w,0} = max{ut —w,0} =limu; a.e.inQ
j

we deduce also

lim measA; = meas{z € Q: u(zr) > 1} < +o0 (10)
J
From (8), (9), (10) we get that the sequence {u;}jen is bounded in H}(Q); from
known results a sequence of convex means of functions chosen from {%@; } ;en converges
strongly in H!(€2). This proves that max{u —w,0} € H}(Q).

By the same proof we may verify that
max{u — kw,0} € H}(Q) Vk > 0 (11)

Now define, for brevity, uy := max{u — kw,0}. We can choose this function uy as
the test function v in the inequality

alu —kw,v) <0Vv € HX(Q), v>0

obtaining
a(ug,up) <0OVEk >0 (12)

At this point we can proceed as in [1], Theorem 1. From (6), when k < k, is
sufficiently near to k,, the measure of {x € Q : wi(x) > 0} is arbitrarily small.
Taking into account the hypotheses made on the coefficients a;;, b;, d;, ¢ of a(.,.),
we can find some k < k, such that (from (12)) ux, = 0 a.e. in €, a contradiction. [J

4. — Main result

Theorem 1. Suppose that the hypotheses listed in Section 2 are verified, and fur-
thermore: there exists a function w € L*(Q)NHL (Q) such that ess infow > 0, w, €

loc

XP(Q) with p > n, and w is a solution of the inequality a(w,v) > [jvdz Yv €



HXQ), v > 0in Q. Then for any T € HY(Q) there exists one and only one
solution u of the Dirichlet problem

a(u,v) =< T,v >pya) Yo € Hy(Q), (13)
ue HY Q)

and there exists a constant K3, depending on the coefficients of a(.,.), n,Q but not
depending on T, u, such that

ull @) < Ks||T||g-1(0) (14)

Proof. It is evidently sufficient to prove that the a priori inequality (14) is valid for

the solution w of the Dirichlet problem (13). For what proved in [4] (Lemma 4), it
is sufficient to prove (14) in the particular case in which < T,v >:= [, fvdx with
[ € HYQ) or, more generally, f € L?(2). Therefore let u be the solution of the
Dirichlet problem

a(u,v) = [, fode Yv € HL(R),
{u € H;(Q)Q (15)

where f is a given function in L?(Q); we need to prove the existence of a constant
K3 such that the a priori inequality

lullz2@) < Kallfll2@) (16)
is valid (this is sufficient as in [4]).

Given f € L*(2), we can write f = max{f,0} + min{f,0}. If we denote by uy, us
the solutions of the Dirichlet problems

{a(ul,v) = Jomax{f,0}vdz Vv € H,(Q), (17)

u; € H;(Q)

{Q(U2,U) = [ymin{f,0}vdx Vv € H)(2), (18)
uy € Hy(Q)

we have, for the uniqueness of the solution (Lemma 2), u = u; + up. Therefore it is
sufficient to prove inequlities of the type

1|2 < Ks|| max{f,0}|[r2() (19)
[[ua|[z2) < Ks||min{ f,0}|[z2(q) (20)

in order to reach (16). By proceeding in this way in conclusion it is not a restriction
to suppose, in order to prove (16), that f > in Q.

To this end, let z be the solution of the Dirichlet problem

/{w Z azjlegbx] +U)Z sz
2,7=1
_Zazgwxzz%qb—l—w}dx—/fqﬁdx Ve € H(Q) (21)
1,7=1
(2 € H,(Q)



We remark that, for the hypotheses made on the function w and on the coefficients
aij, bi, d;, the Dirichlet problem (21) satisfies the hypotheses of Theorem 1 of [4],
therefore there exists one and only one solution z of problem (21) and it turns out

12]|22(0) < K| fllr2@) (22)

where the constant K3 depends only on the coefficients of a(.,.), n and Q. Fur-
thermore, since we have supposed f > 0 in (2, it is also z > 0 in  (Lemma 1 of

[4]).

Now we follow a procedure already used in [7], [6] for elliptic equations in non
divergence form, i. e. the use of the function u/w as a solution of another equation.
In fact we have

/{w i (U W), Oa, —i—wz D (u/w) g, ¢ —
- Z AijWe, (W) W)y, 0} dx + a(w, up/w) = alu, d) Vo € H(Q) (23)

This equation can be proved by a simple calculation (recall that u/w € H}(2) for
our hypotheses and Lemma 1). By hypothesis we have also

a(u,v) = /va dx Yv € H:(Q) (24)

a(w,v) > /vdx Yo € HX(Q), v>0 (25)
Q
therefore from (21), (23), (24), (25) we deduce
/{w a;;(z —u/w) xlgzﬁm]—l—wa —di)(z —ujw)y, ¢
i,j=1
3 g (e~ w0} de 2 00 € HYD), 620 (20
ij=1
From (26) and Lemma 1 of [4], it follows
u/w < z ae €9 (27)
But it is also, for the same Lemma, u > 0 a.e. in €, so from (27) we get easily
lull2@) < [[wllz=@ll2l] 220 (28)

from which and (22) the conclusion (16) is attained. O
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