Dirichlet Problem for a Class of Linear Second Order Elliptic Partial
Differential Equations with Discontinuous Coefficients.

Mavrizio CHicoo (Genova) (¥) (*%)

Summary. ~ I give a sufficient condition in order that a Dirichlel problem is solvable in H2(Q)
for a class of linear second order elliptic partial differential equations. Such a class includes
some particular cases for which the result is known.

Sunte. — 8¢ prova una condizione sufficiente affinché un problema di Dirichlet sia risolubile
in H¥}Q) per una classe di equazioni differenziali alle derivate parziali lineari ellittiche del
secondo ordine. Tale classe comprende alcuni casi particolari per © quali il risultato é noto.

1. — Introduction.
Let us consider the uniformly elliptic operator

1) L=—Sa, ot 30,0

.5=1 N o; a.Z',- i=1 8.’13,- T
defined in an open set £ of B". Given f'in L,(£2), we want to solve the Dirichlet
problem

Lu=f a.e. in £,

(2)
we H}2)N HYQ)
under sunitable hypotheses on the coefficients of .

While for # =2 such a problem has one and only one solution (at least with
proper ¢) even if the coefficients a,; are only in L®(£2), this assumption is not suf-
ficient for n>3. In such cases additiohal hypotheses are necessary, for example
the following ones: a,;€ C%(2) (see [1], [8], [4]), a,c H"(£) (see [9]), ess Qinf(Za,-,-)z-

;N

(2 afj)—i”}n—l (see [12], [2], [3]).

i,f=1

i=1

(*) The present work was written while the author was a member of the « Centro di
Matematica e Fisica Teorica del C.N.R.» at the University of Genova, directed by professor
J. CEccoNI.

(**) Entrata in Redazione il 25 febbraio 1971,
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The aim of the present work ig to find a more general condition for the coeffi-
cients a;; which assures the solvability of problem (2}, at least for some value of e.
All the types of equations mentioned above satisfy this condition and therefore are
particular cases of the clasg here considered.

2, — Notations and hypotheses.

The following hypotheses will be assumed in the sequel without mention, Let
be a bounded open set in R* with n>3. We suppose that 80 (boundary of Q) is
represented locally by a function with continuous second derivatives. Let H?(Q),
H*(Q) be the spaces obtained by completing C*(2), C3(R2) respectively according
to the norm

|14l g0y = H"”"’HL,&) + !?um?&g@) .
i=1
For p =2 we shall write simply H*(Q2), H}({2) instead of H¥(Q), HI*(2). Let H*(Q)
be the gpace obtained by completing C*(f2) according to the norm

(3) 1] gy = ”“”L,(m + ”E “um‘z,”L,(n) .

i,4=1

It can be proven (see c.g. [8]) that in H*(Q)N H)(L2) a norm equivalent to (3)
is the following:

H“wzuz.w):{ i H“x,x,“i,m)}*'

2,7=1

If we HY{L) and h is a real number, we say that u<k on 882 in the sense of HY(Q)
if there exists a sequence {u},, such that u,eC1({), u;<h on 92 (j=1,2,..)
and 5% lu—u) g0, = 0. Then we suppose a;;€ L (Q), a;=ay; (4,7=1,2,...,n),

S autd: >t ae. in 2 with 3, positive constant, bie L.(2) (1=1,2,...,n),
£,.5=1 .
ceL () with ¢=2 if n =3, ¢>2 it n=4, ¢=n[2 if n>5.
Let L be the operator defined in (1), let » be a positive real number. Let us
denote with A(») the following elass of square matrices of order n:
t}?}.

n
Ay) = {{ii”}: @, e Hvn(Q), Gy =y (1, § =1, 2, ., ), S @utity >y

4,7=1
Finally we set

G = {g: g L (2), essninfg> 0} .
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3. — Main result.

The aim of the present work is to prove

THEOREM 1. — Besides the above mentioned hypotheses, we assume that

(4) infv~2{1nf inf esssup 2 (Gi;—ga,)® }<1-

>0 gEQ [a11€4 () 2 fi=1
Then there exisis a positive constant ¢,, depending on n, Q2 and the coefficients a;, b;
of L, such that if ¢>e¢, a.e. in £ problem (2) has one and only one solution. If more-
over is ue H* Q)N HYQ), Lu<0 a.e. in 2, c=c, a.e. in 2, it follows <0 a.c. in Q.

The proof of this theorem ig found in n. 5.
We observe that condition (4) is certainly verified in the following cases:

i) a,;€ HY*(82): it is immediate with v =, g =1, @;; = a;.

ii) a;;€ 0*(92): again with ¥ =v,, g =1, remembering that H“*() is dense
in 0*(Q) in the uniform metric.

iii) Equations « of Cordes type», i.e. with ess inf (Ean)q-( > afj)_1> n—1.
=1 i,7=1

In this case (see [2], p. 704) inequality (4) is Verlﬁed with » =1, diy=4d,,

n

- (3e)(34)"

1,§—1

4. — Some preliminary lemmata,

Levya 1. - Let [d,;]€ Ap) and 0<<e< v. Lot .E be the operator

% 82
s i
5) == 2 bug o+ Z bin a

4= =1

Theﬁz there exists a non negative constant Ly, depending on &, n, Q and the coefficients
of L, such that if A>2, we have

“umx“m(!)) <@p—e) “l":u + 2 1,0
for any we H*(Q) N HYQ).

ProOF. — Let us start for example from [8], p. 175-178. Here it is foundamen-
tally proved what follows: for any #> 0 there exists a positive constant K,
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depending on 7, n, £ and the coefficients of L such that

(6) Pt < Nl 1 Lt 00 + {0l 00 + 0l 0}

for any u e HYQ) N HYQ). Using known regults (see e.g. [6], p. 122) from (6) we
get at once

(7) ”gff“mﬁ,(m <27 |u,,] igm - fizﬁgﬁgm + K, H“gfigm)

valid for the same functions «, where the constant K, depends on #, %, £ and the
coefficients of L.
Moreover it is easy to get

(8) qu + Z“Hi,m) = qu'“:,cm + A u)i,@ + 2i,f(ﬂu)u dx =
2

= Ll + 720 + 22 { 3 dtat, + 3 [b+ 3 @) e + .ma} i,
o 1,f= gx=]

=1

[9) z dij umjuwj>v“u¢“ig(g)

=1

where we have written, for shortness,

ki 3
Ji i = { 3 I}

=1

Using known properties of the space H;({2) we find, for any 4> 0:

=1

(10) ﬁ [bi +3 (c”»,-nx,] o, +- WL mféﬂuzﬁi,(m + Kyl 0

satisfied for any e HY(Q), where the constant K; depends on n, 4, £ and the
coefficients of L.
Now, choosing 8 = »/2 in (10), from (8), (9), (10) it follows
(11) (L - Janlld oy > | Ll o + 2l 0 + |G 0y — 2K 4]0y -
From (7}, (11) we get

(12) (,v& - 2772)}[1’[’@9;“2;(9) < “Z’M Jr- ;',u

i.(ﬂ) + (K, + 2/K,— 12)”’““2@_ M’“uac“i,m) .

Let us choose # such that 0< 27*< 2ev—&*; in this way the constant K, also is
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determined. Then put 4, = K,+ (K?-+ K,)}: from (12) we conclude
1h0al sy < (v — ) [ Lt + At 0,

valid for any A>4, and any e H¥Q)NH{2). m
The following lemmata are very similar to the corresponding ones in [3];
I repeat them for readers’ convenience.

LEMMA 2. — Let us suppose that the coefficients a,; of L satisfy condition (4).
Then there exwist a function g€ G and two positive constants A* and K,, depending
on n, 2, g and the coefficients of L, such that

(13) “um“%m)g\ilf&”gllu + Z“”Lgcm

for any we H} Q)N H(2) and uniformly for any 1> 2*.

Proor. - Since by hypothesis inequality (4) is satisfied, there exist a positive
constant », a function ge@ and an operator L like (5) such that

(14) O<k<y
where

7 3
(15) E= {essﬂsup > (@ “9%)2} .

£,5=1
From (14), (15), by proceeding as in [2], it follows

i
|
p—

M:

(16) {(gL + AL)u — (L + AI) “Hmm

(ga/u' - a/w’)uw‘ x;

2
<
<
2(2)

<688 Sup z (gaz; zi)2” uwx“i([)) < kﬂ““mw”iz(!))

4,=1

11,J=1

for any we H{Q2)N H)(2). From lemma 1 there exists a positive constant 1, de-
pending on e, =, £ and the coefficients of 1~L, such that

(17) ”uszL o <(r—e)y ”Lu + Z’“HL @

for any A>4, and any we H¥ Q)N H(2). Let us choose now & such that 0 <:z<
<v—k. From (14), (15), (16), (17) and known theorems (see e.g. [5], p. 584) if
4>, there exists the inverse operator (gL -+ AI)~! and inequality (13) is satisfied
with K, =(r—k—e)". =

LEMMA 3. — Hypotheses: the coefficents a:; of L satisfy condition (4), g and I* are
defined as in lemma 2, A>2*, fe L¥Q), zc H¥Q). Conclusion: there exists onc and

2~ Annali di Matemativa
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only one solution w of the Dirichlet problem
gLw + Aw = f a.e, in 0,
w—zeH} Q)N HL(2).

Moreover if it is <0 a.e. in £, 60 a.c. in 2, z<M on 20 in the sense of H (L),
then it follows w< M a.e. in L.

PROOF., ~ Let us prolong the definition of the functions d,; (5,1=1,2,..., %)
satisfying (14) to all of B" in such a way that, denoting by the same letters the
prolonged functions, it turns out

(]8) dii EHLW(R") ('i’ j == 17 2, ceey ’ﬂ) 5 z fiﬁhtj>v]t]3 a.e. in R".

t,4=1

This is possible because 842 is sufficiently regular: see for example [6]. Then we put

ga; in 2
(19) Xy = (4, §=1,2,..., ).
I dys in B"— O ’ y Ay eeey
Let ¥ be a function such that #e CP(R"), d(x) =0 if || >1, fﬂ =1.
For any positive integer m and for v E* put
(20) a7 (@) = m" [ B(ma —-my) d.(y) dy (i =1,2,...,m)
Rn

)

and similarly define o’. Then we have, for m=1,2, ... and 4,j=1,2, ..., n:

n

a™ g™ e 02 (R, S amit, >t in R",

i ! u ii Vi
i, 5=1
B n
(21) max > (G — ) <e<sssup z (G ga,)?

— (3
Q =1

Besides thoe sequence {a™},., converges to ga,; in every L (), 1<p <+ oo, and

the sequence {@™} .. converges to &, in H“*(£).
If we suppose 0< £< v and denote by L™ the operators

K 2 n

(22) ™ =3 a7 + Eb,-gi—_+c fm=1,2,...)

=1 0% o

it is easy to prove, through the proof of lemma 1, that the inequality

(23) H%a:c“h(f?) < —S}ﬂﬂﬁ("au + ‘;”%”Lz(m (m=1,2,..)
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is verified for any ue H* Q)N HY(LQ) and for any A> 4, uniformly with respect to
m (that is, there exists a constant 1, not depending on m such that (23) is sat-
isfied for any A>4,). Let us define the operators

ot

n % 0
my m) — = e}
(24) L™ = {%‘1% 5.0, 4 gf" 5, +e (m=1,2,..)

Remembering lemma 2 with its proof and (14), (21), (23) we get
(25) e i <ELJ L0 + 2] 1, 05 (m=1,2,..)

valid for any weH*(Q)N Hy(2) and any A> A% with A* and K, independent on m.
As L' hasg regular coefficients, from known theorems and (25) the Dirichlet problem

Lomym | Jgm = § a.e. in 0,
(26)

um —z e HYQ) N HYQ) (m=1,2,..)

has one and only one solution # as soon as A>A*. From (25) we get the exist-
ence of a sequence extracted from {w™} __ which converges weakly in H2(Q) to
a function w such that

gLw + dw = f a.e. in 0,
(27)
w—ze H Q)N HYQ).
This can be easily verified by passing to the limit for m — 4+ oo in (26). The
uniqueness of the solution w is a direct consequence of lemma 2.
Finally let us consider the case f<0, ¢>0 a.e. in O, 2<<M on 8Q. For known
results (see e.g. [11]) we have

(28) um< M in Q (m=1,2,..)

and sinee u™ converges weakly to w we get w<M a.c.in 2. =

LEMMA 4. — Let us suppose that the coefficienis a,; of L satisfy condition (4) and
that ¢>0 a.c. in L. Then there ewists ge @ such that among all the eigenvalues of
the operator — gL there is one, say A,, with mazimum real part. Besides, A, is real
and i3 the infimum of the real numbers A such that: (gL + AD)u<0 a.e. in 8,
ue Q)N HYRQ) implies u<0 a.e. in Q.

Proor. — Let g be chosen as in lemma 2. From lsmma 3 if 1 is sufficiently
large there exists the inverse operator (gL -+ AI)-' from L,(£2) to Q)N HYQ).
So the resolvent set of — gL is not empty and since H*(Q2)N HY(2) is compact
in L,(Q) the spectrum of — gL is disecrete and countable. From lemma 3 this
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spectrum has empty intersection with the set {i: AeR, A>4*}. Moreover, if we
set @, = (gL -+ ul)™ when pu>2* lemma 3 proves that it turns out G,f<0 a.e.
in Qif fel,(0), f<0 a.e. in 2.

From known results ([7], Theorem 6.1, p. 262) there exists a real eigenvalue t,
of ¢, having maximum modulus among all the eigenvalues of G,:

(29) It <ty Vt eigenvalue of G,.

Moreover it is easy to see that if 4 is an eigenvalue of the operator — g, the number
t=(u—A)"! is an eigenvalue of the operator ¢, and conversely. Therefore, if we
pub ¢ == (p— 4;)7, (29) yields

(30) lw— A >pu—2 V1 eigenvalue of —gL.
Since (30) is valid for any sufficiently large y, we can let u tend to +-ooin it and get
(31) Re A< A, V24 eigenvalue of — gL,

It remains to show that 2, is characterized as the present lemma elaims.
Let us consider the following set of real numbers:

B={2:gLu-+ lu<0 a.e. in 2, vc HHQ)N H{(Q) =2 <0 a.e. in £} .

This set B has the properties:

i) B contains the half line {i: 1>1*} (see lemma 3).

ii) B is open on the left (for this argument see [10]). In fact let p be in B
and 0 < u—A<|G,[™ then there exists ¢, and

G,=>(u—nen
=0
whence A€ B.
iii) If B and u is not an eigenvalue of — gL, then yeB. In fact in this
case it is easy to verify that lim &, —G,[=0 (see again [10).

This is sufficient to conclude that B is an open half line whose right extreme is
an eigenvalue, therefore B= {1: 1> 1,}. =

5. — Proof of Theorem 1,

It is sufficient to show that there exists a positive constant ¢, depending on «, 2
and the coefficients a,;, b, of L such that if ¢>¢, a.e. in 2 the operator gL is
invertible for a suitable ge @. In fact it is clear that problem (2) is equivalent
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to the following
gL = gf a.e. in £,

(32)
weH¥ Q)N HYQ).

Let us choose ¢ ay is lemma 2. Cousider the operator

n 02 n o
R o

i Vox0x; T &

i.e. the operator L where we set ¢=0. From lemma 4 among all the eigenvalues

of — gL, there exists one, denoted by Z, with maximum real part. Now let us

suppose essginfe >> @88 5Up 2/9 and let us show that in this case 4, (i.e. the eigen-
2

value of — gL having maximum real part) is negative. From Theorem 6.1 of [T7]
there exists a non negative eigenfunction w, corresponding to 4,: w, e H*(£2) N H}{(L),
w, >0 a.e. in £, w, not identically zero in £,

(33) gLw, + Ayw, = gLyw, + gew, + A,w, =0 a.6. in 0.
Now choose A such that 1< A< ge. If it were A;>0 we should get from (33)
glyw, + Aw, = — L w, + (A —geyw, <0 a.e. in Q2

and from Lemma 4, applied to the operator L,, this would imply w,<0 a.e. in £,
a contradiction. Therefore 4; < 0 and from lemma 4 we get that u € H*(Q) NHY(R),
gLu<0 a.e, in 0 imples #<0 a.e. in Q.

So Theorem 1 is proven taking for ¢, any number greater than esssup/g. m

ReEMARK. — If n =3 we can take any positive number as ¢, in Theorem 1. This
can be proven exactly as in [3]. As far as I know, the problem of extending this
result to n>4 is open. It would be sufficient to know whether for other values of »
the eigenfunctions of the operator L are sufficiently regular.
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Note added in proofs (December 27, 1971},

Other boundary value problems (NEUMANN, oblique derivative) for the same kind of

equations will be considered in a subsequent paper. On that oecasion condition (4) will be
expressed differently and its local character will be proven. In this connection the fol-
lowing work must be added to the references:

M. GiaQuinta, Bquaziont ellittiche di ordine 2m di tipo Cordes, Boll. Un Mat. Ital, (4) 4

(1971), pp. 251-257.




