Comportamento all’infinito delle soluzioni di equazioni ellittiche di tipo variazionale.

MAURIZIO CHICCO (Genova) (*)

Summary. - I prove a Liouville type theorem for solutions of second order elliptic partial differential equations of divergence form with lower order terms.

Introduzione. - È noto che una funzione armonica in tutto lo spazio e limitata (superiormente od inferiormente) è necessariamente costante. Tale teorema è stato generalizzato alle soluzioni di equazioni ellittiche, di tipo variazionale o no, facendo ipotesi di vario genere sui coefficienti (vedi [1], [2], [3], [4], [5], [7]).

In questo lavoro si considera il problema per una equazione del tipo seguente (variazionale):

(1) \[\int_{\mathbb{R}^n} \left(\sum_{i,j=1}^{n} a_{ij} \frac{\partial u}{\partial x_i} \frac{\partial \varphi}{\partial x_j} + \sum_{i=1}^{n} b_i \frac{\partial u}{\partial x_i} \varphi \right) \, dx = 0 \quad \forall \varphi \in C_c^{\infty}(\mathbb{R}^n), \]

ove \(u \in H^1_{\text{loc}}(\mathbb{R}^n) \) e i coefficienti \(a_{ij} \) vengono supposti, quanto alla regolarità, soltanto misurabili ed uniformemente limitati. La presenza dei coefficienti \(b_i \) comporta la seguente alternativa: se \(b_i(x) = 0 (|x|^{-\alpha}) \) per \(|x| \to \infty \) con \(\alpha \geq 1 \), allora ogni soluzione limitata della equazione (1) è necessariamente costante; se \(b_i(x) = 0 (|x|^{-\alpha}) \) con \(\alpha < 1 \), tale risultato non è più necessariamente vero (vedi l’osservazione 2).

Il risultato principale del presente lavoro è costituito dal teorema 2; occorre però premettere vari lemmi.

Notazioni ed ipotesi. - Sia \(\Omega \) un aperto di \(\mathbb{R}^n \); con \(H^1(\Omega) \) ed \(H^1_0(\Omega) \) si indicano rispettivamente i completamenti degli spazi \(C(\Omega) \) e \(C^0(\Omega) \) secondo la norma

\[||u||_{H^1(\Omega)} = ||u||_{L^2(\Omega)} + \sum_{i=1}^{n} ||u_{x_i}||_{L^2(\Omega)}, \]

Con \(H^1_{\text{loc}}(\Omega) \) indichiamo lo spazio delle funzioni \(u \) definite in \(\Omega \) tali che \(u \in H^1(\Omega) \) qualunque sia l’aperto limitato \(\Omega \) contenuto in

(*) Lavoro eseguito nell’ambito dell’attività dei gruppi di ricerca matematici del Consiglio Nazionale delle Ricerche.
Ω colla sua chiusura. Nel seguito faremo le seguenti ipotesi, senza espressa menzione:

esistono due costanti positive M, γ tali che

$$|a_{ij}(x)| \leq M, \quad \sum_{i,j=1}^{n} a_{ij}(x)\xi_i \xi_j \geq \gamma |\xi|^2 \quad \text{per ogni } x \in \mathbb{R}^n;$$

$b_i \in L^1_{loc}(\mathbb{R}^n)$ ed esistono due costanti positive K_1, K_2 tali che, per $i = 1, 2, \ldots, n$, risulti:

$$b_i = b_i^+ + b_i^-, \quad |b_i(x)| \leq K_i |x|^{-1} \quad \forall x \in \mathbb{R}^n, \quad \sum_{i=1}^{n} |b_i^+| \leq K_2.$$

Sia D un aperto contenente un intorno del punto all’infinito:

$$D \supset \{x: x \in \mathbb{R}^n, |x| > \alpha \} \quad \text{con } \alpha \geq 0$$

e sia $u \in H^1_{loc}(D)$ soluzione della equazione

$$\int_{D} \sum_{i,j=1}^{n} a_{ij}(x)u_{\xi_i} \xi_j + \sum_{i=1}^{n} b_i u_{\xi_i} \, dx = 0 \quad \forall \varphi \in C_0^\infty(D).$$

Indichiamo ancora con $Q(y, \bar{y})$ il cubo n-dimensionale così definito

$$Q(y, \bar{y}) = \{x: x \in \mathbb{R}^n, |x_i - y_i| \leq \bar{y}, i = 1, 2, \ldots, n \}.$$

Possiamo ora enunciarre il seguente

TEOREMA 1. Sia $u \in H^1_{loc}(D)$ una soluzione positiva della (1). Sia $x_0 \in \mathbb{R}^n$ e posto $d = |x_0| - 4\sqrt{n}$, supponiamo $d > 0$. Allora esistono due costanti positive $\tilde{\rho}_0$ e H, con H indipendente da $\tilde{\rho}$, tali che per tutti $i \rho > \tilde{\rho}_0$ risulti

$$\max_{Q(x_0, \rho)} u \leq H \min_{Q(x_0, \rho)} u.$$

Tale teorema verrà dimostrato attraverso vari lemmi seguendo da vicino il procedimento usato da G. STAMPACCHIA in [9] per provare la disuguaglianza di HARNACK. Cominciamo dal

LEMMMA 1. Sia θ un numero positivo e non maggiore di 2. Allora nelle stesse ipotesi del teorema 1 esistono tre costanti positive ρ_1, K_2, β (K_2, β indipendenti da ρ) tali che per ogni $\rho > \rho_1$ risulti

$$\left(\frac{1}{\rho^n} \int_{Q(x_0, \theta \rho)} |u|^\beta \, dx \right)^{1/\beta} \leq K_2 \left(\frac{1}{\rho^n} \int_{Q(x_0, \theta \rho)} |u|^{-\beta} \, dx \right)^{-1/\beta}.$$
Dimostrazione (vedi [6], lemmi 8.2 ed 8.3). Si osserva che la funzione \(v = \log u \) soddisfa in \(D \) alla equazione

\[
- \sum_{j=1}^{n} \sum_{i=1}^{n} a_{ij} v_{ij} - \sum_{i=1}^{n} b_i v_{x_i} = 0
\]

da cui moltiplicando per \(x^t \) con \(x \in \mathcal{C}(Q(px_0, 2\rho)) \) (supposto \(\rho d > a \) in modo che \(Q(px_0, 2\rho) \subset D \)) si ottiene

\[
\int_{Q(px_0, 2\rho)} \sum_{j=1}^{n} \sum_{i=1}^{n} a_{ij} x^t v_{ij} dx = \int_{Q(px_0, 2\rho)} \sum_{i=1}^{n} (b_i + b_i') x^t v_{x_i} dx.
\]

Sia ora \(S(y, r) \) la sfera di centro \(y \) e raggio \(r \); supponiamo \(r \leq \rho \) (sarà chiaro dal sequelto che basta limitarsi a considerare questo caso). Sia poi \(x \in \mathcal{C}(S(y, 2r) \cap Q(px_0, 2\rho)), x = 1 \) in \(S(y, r) \cap Q(px_0, \rho), \ x \leq \frac{2}{r} \). Ne segue (osserviamo che \(|b_i(x)| \leq \frac{K_i}{\rho d} \) se \(x \in Q(px_0, 2\rho) \)):

\[
v \int_{Q(px_0, 2\rho)} x^t v_{x} dx \leq 2M \left(\int_{Q(px_0, 2\rho)} x^t v_{x} dx \right)^{1/2} + \int_{Q(px_0, 2\rho)} x^t v_{x} dx + K_1 \left(\int_{Q(px_0, 2\rho)} x^t v_{x} dx \right)^{1/2} \left(\int_{Q(px_0, 2\rho)} x^t dx \right)^{n-2}
\]

da cui, per la scelta di \(x \):

\[
v \int_{Q(px_0, 2\rho)} x^t v_{x} dx \leq 2M \int_{Q(px_0, 2\rho) \cap S(y, r)} x^t v_{x} dx + \frac{9K_1^t}{d^2} \text{mis} [Q(px_0, 2\rho) \cap S(y, 2r)]^{n-2} + 9K_1^t \text{mis} [Q(px_0, 2\rho) \cap S(y, 2r)]^{n},
\]
einfine, con facili calcoli:

\[
\int_{Q(px_0, 2\rho)} x^t v_{x} dx \leq H_v r^{n-1}
\]

ove \(H_v \) dipende da \(K_1, K_2, d, \nu, M, \theta, a, n \) ma non dipende né da \(\rho \) né da \(r \); non è difficile vedere che tale disuguaglianza vale...
anche se \(r \geq \theta \). Una semplice applicazione della disuguaglianza di Schwartz fornisce

\[
\int_{\Omega(\mathcal{Q}, \theta; r)} |v_\beta| \, dx \leq H_\beta r^{n-1}, \quad H_\beta \text{ indipendente da } \beta \text{ e da } r.
\]

Ciò significa che \(v_\beta \) appartiene allo spazio "di Morrey" \(L_1(Q(\mathcal{Q}x_\beta, \theta)) \) con norma (in tale spazio) non maggiore di \(H_\beta \). Per un recente risultato di Trudinger (vedi [8], corollario) ciò basta per concludere che esistono due costanti positive \(H_\beta \) e \(K_\beta \) indipendenti da \(\theta \) tali che:

\[
\int_{\Omega(\mathcal{Q}, \theta)} e^{H_\beta |v - u|} \, dx \leq H_\beta n,
\]

dai cui in modo standard (vedi ad esempio [6] pag. 241) si trova la (2) c.v.d.

Lemma 2. Siano soddisfatte le ipotesi del teorema 1. Allora per ogni \(\beta, 0 < \alpha \leq 4 \), e per ogni \(p, p' \) rispettivamente positive \(p_\beta, K_\beta, K_\beta \) e \(K_\beta \) indipendenti da \(\beta \) tali che per ogni \(\beta > \beta \) e per ogni \(x \in C\alpha(Q(\mathcal{Q}x_\beta, \theta)) \) risultì, posto \(v = u^\alpha \):

\[
\left\{ \begin{array}{l}
\int_{\Omega(\mathcal{Q}, \theta)} (\alpha v)^{n-2} \, dx \leq K_\beta \int_{\Omega(\mathcal{Q}, \theta)} \beta v^\alpha \, dx + \frac{K_\beta}{\beta} \int_{\Omega(\mathcal{Q}, \theta)} \beta v^\alpha \, dx.
\end{array} \right.
\]

Dimostrazione (vedi [6] lemma 8.1). Si verifica subito che la funzione \(v = u^\alpha \) soddisfa alla equazione

\[
- \sum_{j=1}^{n} \sum_{i=1}^{n} a_{ij} v_{x_i} v_{x_j} + \sum_{i=1}^{n} b_i v_i = \left(\frac{1}{p} - 1 \right) \sum_{i=1}^{n} a_{ij} v_{x_i} v_{x_j}.
\]

Moltiplicando per \(\alpha^2 \), ove \(\alpha \in C\alpha(Q(\mathcal{Q}x_\beta, \theta)) \) e \(\rho \alpha \geq \alpha \), si trova:

\[
\left(2 - \frac{1}{p} \right) \int_{\Omega(\mathcal{Q}, \theta)} \sum_{i=1}^{n} a_{ij} \alpha^2 v_{x_i} v_{x_j} \, dx = - \sum_{i=1}^{n} \int_{\Omega(\mathcal{Q}, \theta)} \beta v_{x_i} \, dx - \sum_{i=1}^{n} \int_{\Omega(\mathcal{Q}, \theta)} \beta v_{x_i} \, dx,
\]

\[
\sum_{i=1}^{n} \int_{\Omega(\mathcal{Q}, \theta)} \beta v_{x_i} \, dx;
\]

\[
\int_{\Omega(\mathcal{Q}, \theta)} \alpha^2 v^\alpha \, dx \leq 2M \left(\int_{\Omega(\mathcal{Q}, \theta)} \alpha^2 v^\alpha \, dx \right)^{1/2} \left(\int_{\Omega(\mathcal{Q}, \theta)} \alpha^2 v^\alpha \, dx \right)^{1/2}.
\]
+ \frac{K_1}{d^3} \left(\int_{Q_{(P_1, \theta_0)}} \alpha^2 \nu^2 \, dx \right)^{1/2} \left(\int_{Q_{(P_2, \theta_0)}} \alpha^2 \nu^2 \, dx \right)^{1/2} + \\
+ S \sum_{i=1}^{N} ||b_i^\theta||_{L^p(Q_{(P_i, \theta_0), \eta_i})} \left[\left(\int_{Q_{(P_i, \theta_0), \eta_i}} \alpha^2 \nu^2 \, dx \right)^{1/2} \left(\int_{Q_{(P_i, \theta_0), \eta_i}} \alpha^2 \nu^2 \, dx \right)^{1/2} \right].

Qui S indica la costante della disuguaglianza di Sobolev

$$||w||_{L^p(\Omega)} \leq S ||w||_{H^1(\Omega)}, \quad \forall w \in H^1(\Omega), \quad 2^* = \frac{2n}{n-2};$$

tale costante dipende solo da n e non da \Omega.

Essendo per ipotesi \(\sum_{i=1}^{N} ||b_i^\theta||_{L^p(Q_{(P_i, \theta_0), \eta_i})} = K_2 \), per ogni \(\epsilon > 0 \) esiste un numero \(\rho(\epsilon) \) tale che per ogni \(\rho > \rho(\epsilon) \) risulti \(\sum_{i=1}^{N} ||b_i^\theta||_{L^p(Q_{(P_i, \theta_0), \eta_i})} < \epsilon \).

Pertanto, con una scelta opportuna di \(\epsilon \) (in dipendenza da \(p, \nu, S \)), si trova che per tutti \(\rho > \rho(\epsilon) \) risulta

$$\sqrt{2 - \frac{1}{p}} \int_{Q_{(P_2, \theta_0)}} \alpha^2 \nu^2 \, dx \leq (2M + \epsilon S) \left(\int_{Q_{(P_1, \theta_0)}} \alpha^2 \nu^2 \, dx \right)^{1/2} \left(\int_{Q_{(P_2, \theta_0)}} \alpha^2 \nu^2 \, dx \right)^{1/2} + \\
+ \frac{K_1}{d^3} \left(\int_{Q_{(P_1, \theta_0)}} \alpha^2 \nu^2 \, dx \right)^{1/2} \left(\int_{Q_{(P_2, \theta_0)}} \alpha^2 \nu^2 \, dx \right)^{1/2}.$$

Ne segue, con facili calcoli, che per gli stessi valori di \(\rho \) si ha:

$$\left(\int_{Q_{(P_2, \theta_0)}} \alpha^2 \nu^2 \, dx \right) \leq H_3 \int_{Q_{(P_1, \theta_0)}} \alpha^2 \nu^2 \, dx + \frac{H_4}{\sigma^2} \int_{Q_{(P_2, \theta_0)}} \alpha^2 \nu^2 \, dx$$

ove \(H_3 \) ed \(H_4 \) dipendono da \(M, \nu, \theta, p, S, n, d \) ma non dipendono da \(\rho \). Una semplice applicazione della disuguaglianza di Sobolev fa passare dalla (5) alla (3), c.v.d.

Corollario. Sia \(\psi \in H^1_{\text{loc}}(D) \) una sottosoluzione locale positiva della (1), cioè risulti

$$\int_{D} \left(\sum_{i,j=1}^{N} a_{ij} \nu_i \nu_j + \sum_{i=1}^{N} b_i \nu_i \right) \, dx \leq 0 \quad \forall \psi \in C_0^1(D), \quad \varphi \geq 0.$$

Sia \(\delta \) un numero compreso tra 0 e 4. Allora esistono tre costanti positive \(\gamma_1, K_4, K_7 \) (\(K_6 \) e \(K_7 \) indipendenti da \(\rho \)) tali che, qualunque
sia la sottosoluzione \(v \), si ha, purché \(\rho \geq \rho \):\(^2\)

\[
\left\{ \int_{Q(x, \rho)} |v|^{n-2}v dx \right\}^{\frac{n-2}{n}} \leq K_6 \int_{Q(x, \rho)} |z|^2 \rho^2 dx + K_7 \int_{Q(x, \rho)} z^2 \rho^2 dx.
\]

\(\rho \leq \rho \)

Dimostrazione. Ponendo \(\varphi = \rho^2 \) nella (6), con \(\varphi \in C^1(\Omega(\rho \leq \rho, \rho)) \), risulta:

\[
\sum_{i, j=1}^{n} a_{ij} \rho^2 \partial_i \varphi \partial_j \varphi dx \leq -2 \sum_{i, j=1}^{n} b_{ij} \rho^2 \partial_i \varphi \partial_j \varphi dx - \sum_{i=1}^{n} b_i \rho \rho_i \rho^2 \varphi dx.
\]

Di qui si procede esattamente come nel lemma 2, c.v.d.

Lemma 3. Siano soddisfatte le ipotesi del teorema 1, sia \(\theta \) un numero tale che \(0 < \theta \leq 2 \). Allora esistono costanti positive \(\rho_1, K_8, K_9 \) (\(K_8 \) e \(K_9 \) indipendenti da \(\rho \)) in modo che per ogni \(\rho > \rho_1 \), risulti:

\[
\max u \leq K_8 \left(\frac{1}{\rho^q} \int_{Q(x, \rho)} u^q dx \right)^{1/q} \quad \text{se } q \geq 2
\]

\[
\min u \geq K_9 \left(\frac{1}{\rho^q} \int_{Q(x, \rho)} u^q dx \right)^{1/q} \quad \text{se } q < 0.
\]

Dimostrazione (vedi [6] lemma 8.4 e teorema 5.1). Poiché la funzione \(\varphi = \rho^2 \) soddisfa alla equazione (4) se \(p < 0 \) oppure \(p \geq 1 \), per tali valori di \(p \) essa è sottosoluzione in \(D \), cioè per essa vale la (6).

Pertanto per tali valori di \(p \) vale la (7) (corollario del lemma 2) purché \(\rho \geq \rho_1 \); osserviamo che la (7) vale qualunque sia la sottosoluzione \(v \) e quindi le costanti \(\rho_1, K_8 \) e \(K_9 \) non dipendono da \(p \).

Dalla (7) e dalla disuguaglianza di Hölder segue, per \(\varphi \in C^1(\Omega(\rho \leq \rho, 2\rho)) \):

\[
\int_{Q(x, \rho)} |v|^2 \rho^2 dx \leq \left[\text{mis} \{ x : x \in Q(\rho \leq \rho, 2\rho) \} \right]^2 \cdot K_6 \int_{Q(x, \rho)} |z|^2 \rho^2 dx + K_7 \int_{Q(x, \rho)} z^2 \rho^2 dx.
\]

In questa disuguaglianza si è potuto estendere gli integrali al cubo di semispigolo \(2\rho \) perché nelle nostre ipotesi \(\theta \leq 2 \), mentre nella (7) si supponeva \(\theta \leq 4 \). A questo punto osserviamo che per
ogni costante \(k \) la funzione \(v_k = \max (v - k, 0) \) è ancora sottosoluzione in \(D \) se lo è \(v \). Inoltre scegliamo, per \(r < \tilde{r} \), \(x \in C_c(Q(x_k, 2\tilde{r})), \quad x = 1 \) in \(Q(x_k, 2\tilde{r}) \), \(|x| \leq \frac{2}{\tilde{r} - r} \). Con questa scelta di \(z \) e sostituendo \(v_k \) a \(v \), la (10) dà:

\[
\int_{A(k, r)} (v - k)^2 dx \leq [\text{mis } A(k, r)]^{\frac{3}{2}} \left[\frac{K_{10}}{(r - \tilde{r})^2} + \frac{K_7}{r^2} \right] \int_{A(k, \rho)} (v - k)^2 dx
\]

ove si è posto: \(A(k, \rho) = \{ x : x \in Q(x_k, 2\tilde{r}) \}, \quad v(x) \geq k \).

Poiché \(|\tilde{r} - r| < \rho \), ne segue

\[
\int_{A(k, \rho)} (v - k)^2 dx \leq \frac{H_3}{\tilde{r} - r} [\text{mis } A(k, \rho)]^{\frac{3}{2}} \int_{A(k, \rho)} (v - k)^2 dx
\]

ove \(H_3 \) non dipende né da \(\rho \) né da \(r \). Inoltre per \(h > k \) si vede facilmente che

\[
(h - k)^2 \text{mis } A(h, r) \leq \int_{A(h, r)} (v - k)^2 dx \leq \int_{A(h, \rho)} (v - k)^2 dx.
\]

A questo punto si procede esattamente come in [8] pag. 222-223 e si conclude che

\[
\max_{Q(x_k, \tilde{r})} v \leq H_3 \left(\frac{1}{|Q(x_k, \tilde{r})|} \int_{Q(x_k, \tilde{r})} v^2 dx \right)^{1/2}
\]

ove la costante \(H_3 \) non dipende da \(\rho \). Ricordando ora che \(v = u^p \) e ponendo \(q = \frac{2p}{p - 1} > 2 \) e \(q = -\frac{2p}{p - 1} \) se \(p < 0 \) si ricavano la (8) e la (9) (vedi [6] pag. 241-242), c.v.d.

Siamo ora in grado di dare la

Dimostrazione del teorema 1 (vedi [6] pag. 242). Intanto dalle (2) e (9) nelle quali si ponga \(\theta = 2 \), si trova che esistono costanti \(\beta \) e \(K_{10} \), indipendenti da \(\rho \), ed un numero \(\rho_0 \) tale che per \(\rho > \rho_0 \) risulti:

\[
\min_{Q(x_k, \rho)} u \geq K_{10} \left(\frac{1}{|Q(x_k, \rho)|} \int_{Q(x_k, \rho)} \theta dx \right)^{1/2}
\]

Inoltre la (8) per \(\theta = 1 \) fornisce

\[
\max_{Q(x_k, \rho)} u \leq K_3 \left(\frac{1}{|Q(x_k, \rho)|} \int_{Q(x_k, \rho)} u^2 dx \right)^{1/2}
\]
la quale è valida per tutti i \(\varphi > \varphi_4 \) e la costante \(K_3 \) è indipendente da \(\varphi \). La tesi del teorema 1 sarà dunque provata non appena si faccia vedere che esistono costanti \(\varphi_5 \) e \(K_{14} \) (quest’ultima indipendente da \(\varphi \)) tali che se \(\varphi > \varphi_5 \) risulti:

\[
\left(\frac{1}{\varphi^n} \int_{Q(\mathbf{a}_s, \varphi^s)} u^s dx \right)^{1/2} \leq K_{14} \left(\frac{1}{\varphi^n} \int_{Q(\mathbf{a}_s, \varphi)} u^s dx \right)^{1/2}.
\]

Per dimostrare la (12), posto \(\chi = \frac{n}{n-2} = \frac{2^s}{2} \), supponiamo che \(2^s \geq 1 \) per tutti gli \(s \) interi (tale ipotesi non è restrittiva perché non si può sostituire a \(\beta \) un numero un po’ più piccolo, col che la (11) vale ancora). Sia poi \(h \) un intero tale che \(\beta^h \geq 2 \). Poniamo ancora \(\beta^s = q_s, r_s = 2^s \left(2 - \frac{s}{h} \right) \) e scegliamo \(z \in C(Q(\mathbf{a}_s, r_s)) \), \(z = 1 \) in \(Q(\mathbf{a}_s, r_s) \), \(r_{s+1} \leq \frac{h}{\beta} \). Applicando il lemma 2 con tale scelta di \(z \), con \(\theta = 2 \) e con \(v = u^s \), si trova che, per \(s = 0, 1, 2, \ldots, h - 1 \), esistono costanti \(\varphi(s), K_4(s), K_4(s) \) tali che per ogni \(\varphi > \varphi(s) \) risulti

\[
\left(\int_{Q(\mathbf{a}_s, r_{s+1})} u^{q_{s+1}} dx \right)^{1/2} \leq K_4(s) \left(\frac{1}{\varphi^n} \int_{Q(\mathbf{a}_s, r_s)} u^s dx \right)^{1/2} + \frac{K_4(s)}{\varphi^h} \int_{Q(\mathbf{a}_s, r_s)} u^s dx \leq \frac{K_4(s)h^h + K_4(s)}{\varphi^h} \int_{Q(\mathbf{a}_s, r_s)} u^s dx
\]

da cui, con facili calcoli:

\[
\left(\frac{1}{\varphi^n} \int_{Q(\mathbf{a}_s, r_{s+1})} u^{q_{s+1}} dx \right)^{1/2} \leq H_4(s) \left(\frac{1}{\varphi^n} \int_{Q(\mathbf{a}_s, r_s)} u^s dx \right)^{1/2}
\]

Se si sceglie \(\varphi > \max \{ \varphi(s); s = 1, 2, \ldots, h - 1 \} \) si possono moltiplicare membri a membri le (13) per \(s = 1, 2, \ldots, h - 1 \) ottenendo:

\[
\left(\frac{1}{\varphi^n} \int_{Q(\mathbf{a}_s, \varphi^s)} u^s dx \right)^{1/2} \leq \left(\frac{1}{\varphi^n} \int_{Q(\mathbf{a}_s, \varphi)} u^s dx \right)^{1/2} \leq H_4(s) \left(\frac{1}{\varphi^n} \int_{Q(\mathbf{a}_s, \varphi)} u^s dx \right)^{1/2}
\]

la quale non è altro che la (12) e vale per ogni \(\varphi > \max \{ \varphi(s); s = 1, 2, \ldots, h - 1 \} \).

Poiché \(\varphi(s) \) è funzione solo di \(\beta \) (oltre che di \(s \)) e \(\beta \) non dipende da \(\varphi \), e poiché anche \(h \) dipende solo da \(\beta \), \(\max \{ \varphi(s); s = 1, 2, \ldots, h - 1 \} \) è un numero certamente finito. Analogamente ogni costante \(H_4(s) \) dipende da \(\beta \)
attraverso s ma non dipende da ρ. Pertanto la (12) sussiste, e il teorema 1 è dimostrato. c.v.d.

Corollario del teorema 1. - Sia A un aperto limitato e connesso di \mathbb{R}^n tale che $0 \notin A$, e sia $\rho_A = \left\{ x \in \mathbb{R}^n \mid \rho \in A \right\}$.

Sia u come nel teorema 1. Allora esiste una costante $H(A)$ dipendente da A e non da ρ, ed un numero $\rho(A)$ tale che per ogni $\rho > \rho(A)$ risulti

$$\max_{\rho_A} u \leq H(A) \min_{\rho_A} u.$$

Dimostrazione. - Sia ρ_0 un numero tanto grande che sia possibile ricoprire ρ_A con un numero finito m di cubi del tipo $Q(x_i, 1)$ ove $|x_i| > 4\sqrt{n}$ per $i = 1, 2, ..., m$. Risulta allora

$$\rho_0 A \subseteq \bigcup_{i=1}^{m} Q(x_i, \rho).$$

Se ρ è abbastanza grande si può applicare il teorema 1, iterando al massimo m volte, che dà:

$$\max_{\rho_A} u \leq \max_{i=1}^{m} \left(\max_{Q(x_i, \rho)} u \right) \leq H^m \min_{\rho_A} u \leq H^m \min_{\rho_A} u$$

da cui facilmente la tesi. c.v.d.

Teorema 2. - Sia $u \in H^{1,0}(D)$ una soluzione dell'equazione (1). Allora se u è inferiormente (o superiormente) limitata in D, esiste il limite di $u(x)$ per $|x|$ che tende all'infinito.

Dimostrazione. - Essa segue dal corollario precedente come in [1] o [5]; riporto la dimostrazione per completezza.

Sia $L = \lim_{|x| \to +\infty} u(x)$. Se $L = +\infty$ non c'è nulla da dimostrare; siccome $L > -\infty$ per ipotesi, sia L finito. Fissato ad arbitrio $\varepsilon > 0$, consideriamo la funzione $w = u - L + \varepsilon$. Esiste un numero $\eta > 0$ tale che $w(x) > 0$ per $|x| > \eta$; inoltre esiste una successione $\{x_m\}$ di punti di D tale che $|x_m| \to +\infty$, $|w(x_m)| \leq 2\varepsilon$.

Prendiamo ora come insieme A nel corollario precedente ad esempio la corona sferica $|x|: 1 < |x| < 2 = C$. Siano ρ_m numeri tali che $x_m \in \rho_m C$. Dal corollario precedente segue che esiste un intero m_0 tale che per ogni $m \geq m_0$ sia

$$\max_{\rho_m C} w \leq H(C) \min_{\rho_m C} w \leq 2H(C)\varepsilon.$$
Per il principio di massimo (vedi [6] corollario 8.2) è anche
\[
\max_{|x| \geq |x_0|} w(x) \leq 2H(C)x, \text{ da cui } |w(x) - w(y)| = |u(x) - u(y)| \leq 4H(C)x
\]
per ogni coppia \(x, y\) con \(|x|, |y| \geq |x_0|\). Data l’arbitrarietà di \(x\) ciò prova che esiste il limite di \(u(x)\) per \(|x|\) che tende all’infinito, e cioè la tesi. C.V.D.

Corollario 1. - Sia \(u \in H^1_{\text{loc}}(\mathbb{R}^n)\) soluzione della (1) in tutto \(\mathbb{R}^n\).

Allora se \(u\) è superiormente (o inferiormente) limitata, \(u\) è identicamente costante.

Dimostrazione. - Dal teorema 2 e dal principio di massimo ([6], corollario 8.2) segue subito che \(u = \lim_{|x| \to +\infty} u(x)\). C.V.D.

Corollario 2. - Sia \(u \in H^1_{\text{loc}}(D)\) soluzione della equazione (1).

Allora o \(u\) tende ad un limite (finito ad infinito) per \(|x|\) che tende all’infinito, oppure esistono due costanti positive \(B\) e \(\gamma\) tali che per ogni \(r\) abbastanza grande risulti
\[
\max_{|x| = r} u(x) \geq Br^\gamma, \quad \min_{|x| = r} u(x) \leq -Br^\gamma.
\]

Dimostrazione. - Coincide con quella di [7] utilizzando il teorema 2.

Osservazione 1. - Se \(b = 0\), Serrin in [5] ha dimostrato che il limite di \(u(x)\) per \(|x|\) che tende all’infinito nel teorema 2 è necessariamente finito. Non so se ciò sia ancora vero nelle nostre ipotesi.

Osservazione 2. - Se \(|b(x)| \geq K|x|^{-\alpha}\) con \(\alpha < 1\) per \(|x|\) abbastanza grande, il corollario 1 e quindi anche il teorema 1 non sono più necessariamente veri. Ciò si vede col seguente esempio. Sia \(0 < \alpha < 1\); consideriamo l’equazione
\[
\Delta u + \frac{\text{sign} x}{1 + |x|^\alpha} \frac{\partial u}{\partial x} = 0.
\]

Essa ammette la soluzione (dipendente dalla sola \(x_1\)):
\[
u(x) = u(x_1) = c_1 + c_2 \int_0^{|x_1|} e^{-\frac{1}{|t|+s}} \, dt.
\]

Si verifica facilmente che questa funzione è limitata in tutto \(\mathbb{R}^n\) ma non è costante; pertanto in questo caso il corollario 1 non vale.
BIBLIOGRAFIA

Pervenuto alla Segreteria dell’U.M.I.
il 26 giugno 1966