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Dirichlet Problem for a Divergence Form Elliptic Equation
with Unbounded Coefficients in an Unbounded Domain (*).

MAURI1z10 CHICCO - MARINA VENTURINO

Abstract. - We prove existence and uniqueness of the solution of the Dirichlet problem for a class
of elliptic equations in divergence form with discontinuous and unbounded coefficients in
unbounded domains.

1. — Introduction.

In 1985 in two interesting papers [4], [5] P. L. LlOIlS considered the Dirichlet
problem
@ ag(u, v) =(T,v) VweHy(Q),
ueH{ (Q)

where T is given in H ~1(£2). The bilinear form ay(-, -) is defined as follows:

@) ao(u, v) = I[ > i, Vs + 2 b;u, .v+c'wu] dax
9

i,j=1

where a;eL *(Q), 2 avtt /v|t|2 for all teR" (with v a positive costant), b; e

eL*(2)(i=1,2, ], n), ¢ = ¢y (p0s1t1ve constant). The open set Q, contained in R", is
not supposed to be bounded The main result of the works by P. L. Lions is that, under
the hypotheses above, there exists a unique solution of problem (1) and the a priori
inequality

&) leller oy < K 1 Tller -1

holds, where K, is a constant depending on 7 and the coefficients of the bilinear form
a’O(" ')-

(*) Entrata in Redazione il 22 aprile 1999.
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The aim of the present note is to extend these results assuming the coefficients b; to
belong only to the space X?(2) (i=1, 2, ..., n) with p > n (see Definition 1 below or
[2]). The proof is similar to the one in [4], [5]; we add some new remarks (e.g. Lemma 3).

2. — Preliminaries.
Let 2 be an open subset of R”; for simplicity we assume #» = 3.

DEFINITION 1. — Let

o(f, p, ) := sup{||fllz»&): E measurable, Ec 2, meas E <4}
X?(Q) = {fe LL(Q): o(f, p, ) < + » V6 >0}
XP(R2) = {feXP(Q): 6lilgl+w(f, p, 0) =0}

For further properties of these spaces, see [2].

LEMMA 1 (Uniqueness). - If a;€e L>(2) (4,j=1,2, ...n), X laijtith v|t|2 for all
i,j=

teR", b;e Xg(Q) (1=1,2,...,n),c=cin Q (v, ¢ positive’constants), ce XM (Q),
then problem (1) (with the bilinear form ay(-, -) defined in (2)) has at most one
solution.

PROOF. - It is sufficient to show that if u € Hj (), ag(u, v) <0 Vv e H}(2),v=0in
Q, then u<0 a.e. in Q. Arguing by contradiction, suppose that m := ess supu > 0.

2
Choose t with 0 <t <m and let «, := max (u — ¢, 0). Since u € H} (), in particular u e
e L2(8), then u, > 0 only in a set of finite measure. Therefore, replacing v with u, in (1)
and observing that u,, = (%), a.e. in Q,:= {xeQ:t<u(x) <m}, it follows from the
assumptions above that

n
@ Collue |2y + Y (w)s |20y < Si;”bz’ e ) B2
where S denotes the constant in the Sobolev inequality

pll2wen-2gny < Sllp 2 l2wny Voo € Co(R™)

(It is well known that the constant S depends only on n: see e.g. [8].) We can choose ¢ so
close to m that meas 2, be as small as we like, and since b; e X§'(£2), we obtain
n
2 Ibillzn,) < v/S. Then from (4) we get
i=1

;=0 a.e in Q,

A
which is a contradiction, since m :=ess supu>t¢t. =
Q

The following lemma is a more precise version of the classical Sobolev inequality.
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LEMMA 2. — Let Q be a cube in R" with side length r, and u e H(Q). Then there
exists a constant K,, depending only on n, such that

6)) [leel| 2mtn -2y < K[ (1/7)|luellz 2y + [ ||L2(Q)] .

PROOF. — A proof of this result can be found e.g. in [3]; we give an outline only for
convenience of the reader. First of all, it is sufficient to consider the case r =1, and the
general case easily follows by a change of variables (dilation).

We can use inequalities (5.7), (5.8) of [3] replacing 2 with @, [=1, p=2, and
obtain

: n
6) [l zve-»gg, < 20~ Dly|l, en-w-2g) + 40 — 1)/ — 2) X [y, |20,
i=1

Since 2 < 2(n — 1)/(n — 2) < 2n/(n — 2), then from Lemma 3.1 of [3], with p,; =2, p=
=2(n — 1)n—2), po=2n/(n—2), e=2"Gn-9(2-2) e get;

(7) ”u“L @2n —2)/(’n~2)(Q) = 2 ~(@n—0)/(2n~2) ||u”L2n/(n—2)(Q) + 2n(3n ~ 42 - 2)n-2) ”uHLZ(Q) .

We combine (7) and (6) and finally get
”u”LZn/(n—Z)(Q) $ 2(3’!& - 4)/(n - 2) ”u”Lz(Q) + 8(% - 1 )/(n - 2) _21 ”uw. ||L2(Q)
1=
whence the conclusion (5) easily follows. =

DEFINITION 2. — (Stampacchia [7]). The bilinear form

n n 7
8 alu, v) = I[ > @i Ve, Elbiu,,iv + gldiuvxi + cu'v} dx

i, =
is said to be coercitive on Hy(8) if there exists a positive constant ¢, such that
au, w) Z ¢ [ulbye) VueHI(Q).
The following result is an extension of theorem 3.2 of Stampacchia [7].

LeEMMA 3. - Suppose a; (1,j=1,2,...,n) as in Lemma 1, b;, d;e X§(R2) (i=
=1,2,...,n), ceX(Q), a(-, -) defined as in (8).

Then there exists a constant 1, (depending on the coefficients of a(-, -)) such that
the bilinear form

alu, v) +/lfuvdx
2

is coercitive on H{ () whenever A = .

PROOF.+—- Let {Q)}1<~ be a family of open cubes in R”, with constant side length 7,
such that hl_JlQ,; =R"and @, N Q) = @ if & = k. By the assumptions above and Definition
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1, we can choose 7> 0 such that
n n
€) Elllbi g < /8Ks, i;“di”L"(Qh) <v8Ky, e, < v/8KE,
(h=1,2,..).

Then, taking Lemma 2 into account, if % € H¢ (R") it turns out:

n
(10) '21 I |b1umtu|dx < (’V/SKz)”u”LZn/(n—Z)(Qh)”ux”LZ(Qh) =
T @

< (v/8) |l [l 2@y [(1 /1) el 2y + Il 2] <
£ (1//4)”’1,4,,,”%2(%) + (V/327'2)”u“%2(Qh) (h/ = 1, 2, ...)

and, by the same procedure,

(11) 2 I ]d uﬁluldx S ('V/4)”u “L2(Qh) + (V/327‘2)”u”Lz(Qh) (h = 1, 2, )

(12) J |Cu2 |dx S ”c”L"/Z(Q},) Hu”%ZM/(n—Z)(Qh) <
Qn

< () |uy B 2q,) + (AT ulEeqy (B=1,2,..).

Now suppose % € H{(R2); from (10) we easily deduce

dx <

n + x n
(13) ’ J > bugude ’ Z f > byugu
gi=1 =1

= Qth

+ o + o
< (v4) D j udx + (v/327r2) X j wlde = (WA ||ug B 20y + (v/327%) [ulB2gg)
h=190Qh h=19”Qh

and similarly

(14) I.Eldi”%“dx‘ <. < ) |2y + (820 lulf 2 ),
Jis
(15) Jeurde| <...< )l lFrco) + WArDlulf -
Q

From (18), (14), (15) and uniform ellipticity the conclusion follows, with 1,=
=5v/1672+v/4 and ¢;=v/4. =
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Following Stampacchia [7] we have, first of all, that the Dirichlet problem

a(u, v) +/1jm)dx =(T, v) Yoe H}(Q),
(16) 9

ue H} (D)
(with T given in H ~}(£2)) has a unique solution if 1 = 1. Notice, furthermore, that the
Dirichlet problem

— 1 >
an { a(u, v) =(T, v) Ywe H}(Q),

ue H}(Q)
has a unique solution if the same holds in the particular case (T, v) = J wvdx with we

Q
e H}(R). In fact we have the following result:

LEMMA 4. — Suppose that the Dirichlet problem

alu, v) = fwvdx Yve Hi (),
(18) Q

ueH ()
has a unique solution whenever w is given in H{(R2), and the a priori inequality
llellz2c2) < Ks llz 2o
holds. Then problem (17) also has a unique solution, and it turns out
19) el 20y < KoMz -1

where K, depends on the coefficients of a(-, ) (K, can be explicitly evaluated).

PROOF. — Let A = 4 (defined in Lemma 3). According to what we observed before,
the problem

aluy, v)ujulvdx: (T, v) Voe H(Q),
(20 7
u € HJ(Q)

has a unique solution %;, which satisfies the a priori inequality
1) o 1y < (eI -1(0)

where ¢, is the constant in Definition 2. (Inequality (19) can be easily proved by using
the fact that the bilinear form a(u, v) + 4 I wv di is coercitive on H¢ (2)). Then we con-
Q
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sider the problem

Uy, v) = fulvdac Yve Hi(Q),
(22) Q

uy € Hi (2)
which by hypothesis has a unique solution %,, and the inequality
(23) ez N2y < Kl |z
holds. From (20), (22) we get

. @, + Aug, v) = (T, v) Ywe Hy(Q),
uy + Aug e HH (D)

ie. u; + Auy is a solution of problem (17), and it is unique by hypothesis. Furthermore
from (21), (23) we deduce

(25) llots + Atz |22y < (1/e1)(1 + AR Tl -1
whence (19), with K, = (1/¢;)(1 + A4 K3), and A, as in Lemma 3. =

The following Lemma is an extension of a result by Miranda ([6], Theorem
4.1).

LEMMA 5. — Let uwe Hi () be a solution of the equation

(26) alu, v) = j fode Vv e HHRQ)
o]

with fe LY(Q) Vq=q, (g, constant, q,=2), b;eX{(Q) (i=1,2,...,n), d;eXP(Q)
with p>n, c=c'+c¢", ¢'=c, (¢, positive constant), c’'eX"?(Q), c"e
eX"p/("+p)(Q).

Then there exist € >0, G = q, K5 > 0 such that if w(d;, n,1)<e (1=1,2, ..., n),
w(c”, n/2,1) <e, then

Il zce) < Ksllfllace

ProOF. — By Remark 3 of [2] applied to the coefficients d;, ¢”, it turns out d; € X§'(£2)
(i=1,2,...,n),c"eX{(RQ), so we can apply the Theorem of [2] obtaining u e L * (£2).
Therefore if yeR, y =0, then v:= |u|"*!sign(u) € Hj (). By choosing v as a test
function we find (since v,, = (y + 1) |u|"u,, a.e. in Q):

n

4] 21 faijuxivxjdxzv(y+1)f|u|yufdx.
2 Q

hj=

Furthermore, let {Qj }1n be a family of cubes of side length » > 0, as in Lemma 3. We
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have, by Holder’s inequality and Lemma 2,

n
s igl ”bi “L"(Qh) ” |u | vR Uy |IL2(Qh) " || r* ”LW"-”(Q;,) s

(28) ] > (b vdo
l_lQh

n
1
sKz21”1’1'”1,"(%)”Iul"/zll«ac||1ﬂ(qh) ;”luly*”LZ(Qh)+y*|“uIY/2ux||L2(Qh) s
b

n
< Kzi;"bi“m@p[()’* +w2)||| | ug|E 2qu + 14272 ||| 4|7 [F2gy]

Here y* :=1+v/2, r>0 is as in Lemma 2 and u > 0 arbitrary. Now let us choose r
such that 0 <r<1 and

(29) K2 _lelbi”L”(Qh) < V/4 (h = 1, 2, .. )

this is possible according to the assumptions on the coefficients b; (i=1, 2, ..., n).
~Furthermore choose x in (28) such that
(30 pu=v/(2¢c7r2).

Therefore from (28), (29), (30) we deduce

<

~=

(31)

%
> Jb,-uxivdx
i1

Qn

< [v(y* + vl(deor®) VATl u | us B2, + (co/Dll|u) [B2qy (R=1,2,..).
If we choose
(82) y:=max (1, v/(2¢yr?), go— 2)
we get
v/(4eyr?) < /2
With all these choices (31) becomes

<

=~

(33)

> fbiuxivdx
i=1
43

< [v(1+ p)/AY %] u, B + (o u]” By, (R=1,2,..)

whence, by summing on &, we finally get

84) < (1 + ) /A %] u, F 20y + o/ 2] [B2cq).-

é‘,l gf bu, vdx

By a similar procedure we ean evaluate the other terms of the bilinear form a{u, v). We
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have (again, by Holder’s inequality and Lemma 2):

85 (y+DTK!

n
> Idiuvmidxl <
i-1

Qn

n
s Kz_li;”di“L"(Qh) w2 u, llz2qu) 2] ”LW"—?)(Q;,) s

1 .
< E||dz'||Ln(Q,,)|||u|y/2uz||L2(Qh)[‘1j”|u|y 2@ + 7 * 12| 2%, l2qe | <

i=1
< 2 d:lnaol@ + v Oll|u e, + AArDIu] [Faqn] (=12, ..)
whence, by summing over h

(36) (y+1)_lK2‘1’ 3 diuvxidxl <
i=1
Q

< [Slip i;”di ”L"(Qh)] [(1 +y )| u B2y + (/47| u] 7" [F2(q)
Similarly again

@7 j c"uvdx

Qn

S J |C"||u|y+2dx S "C" “Ln/Z(Qh)”|u|y* ”%42"/("_2)(Qh) S
h

< K le" llwegly * (|12 2w, L2 + (1) |2) ! * 72 || 2 FF <
< 2KF |l lzweul(r * 21l w2 ug R 2cq,y + (1B | 7" B 2qy]
(h=1,2,..)

and by summing over %

38)

[eruas | <2k suplle” e | [ 6 F Il e ficor + L)l oo ]
2

From (27), (34), (36), (38) we easily get the result. In fact if we choose ¢ such that

(89) 0 <esmin{cr?/[K;(y + 1)), cor®/(8KE), v[2Ky(y + 4)], vI[KZ(y + 2)%1}
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since 0 <r<1, then from (36), (38)

n
ay |2 [dods | <ivtr+ DA R0 B+ @l
e
1) jc"uvdx l < [y + 1/A1|w) " u, B2 0y + o/ || B 2cqy.

Q
From (27), (34), (40), (41), using (26) we deduce

42 |fler+2o el 7 e gy =

= jfudx = a(u, v) = v(y + D|[|u]|Pu, 20 + coll|u|"" [E 2 +
@

— (/A + v/4 +va)y + D |u)Pu, |Bo) — Beo/l|u]” B2 = (co/d)lulll g
whence finally
(43) el +2¢0y < (4/e) | Fll 7 +2(0)-

The assertion is therefore proved with § :=vy + 2, K; :=4/c,, y given by (32), and ¢ de-
fined as in (89). =

It is now convenient to define the «dual bilinear form» with respect to a(u, v) as
follows:

(44) a'(u,v):=alv,u) Yu,veH(Q)

It is clear that, going from a(u, v) to a’(u, v), we interchange the coefficients b; with
the d;’s. Using the fact that L?(Q) and L (L) are dual spaces if 1/p + 1/¢ =1, it is easy
to prove that Lemma 5 is equivalent to the following:

LEMMA 5'. — Let we H{ () be a solution of the equation

(45) a(w, v) = ngdx Vve H} (2)
Q

with ge LP(Q2) Vpe (1, py) (py constant, pye (1, 21), d; e X (), b;e XU(Q2) with ¢ >n
(1=1,2,...,m), c=c' +c", ¢c'eX®(Q), ¢’ =c, (¢, positive constant), c"e
e XM+ D(Q). Then there exist e > 0,P € (1, pyl, K¢ > 0 such that if w(b;, n, 1) < e (i =
=1,2,...,n), w(”", w2, 1) <e, then

(46) llwllz70) < Ks llgllzs o)

PROOF. — As in [4], [5], we may assume without loss of generality that Q is bounded,
provided the costants in the a priori inequalities we prove are independent on . Notice
also that we have supposed the coefficients b; (i=1, 2, ..., %) to be sufficiently small,
instead of the d;’s as in Lemma 5. Therefore it is possible to apply Lemma 5 provided we
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replace the bilinear form a(u, v) with a’(u, v) := a(v, ) since, as we have already re-
marked, in this way the roles of the coefficients b; and d; are reversed.
Let w be as in the hypothesis; we want to show

CY)) llell5) < Ke gl

with Kg=K;, 1/p+1/¢ =1, K;, ¢ as in Lemma 5. From well known results (see e.g [1])
we have

18) leollrar = sup[ [ufda: feL3@), Il <1].
2

Let fe LY(R2) Vg = 2. Consider the Dirichlet problem

a'(u, v) = jﬁ;dx Voe HH(Q),
49) Q

ue H}H ()
The solution % is unique by Lemma 5. Since £ is supposed to be bounded, the Riesz-

Fredholm theory is valid and uniqueness of « implies its existence. By applying again
Lemma 5 to the solution u, we get the existence of a number § =2 such that

(50) lullz.2 0y < Ksll fllaco)-
From (45), (49) it clearly follows

1) a'(u,w)=jfwdx=jgudx.

Q Q

From (48), (61), Lemma 5 and Holder’s inequality we finally get

(52) ||w||L5(!2)=Sup[ [quds: feL3(), ||f||L;,(Q)s1] <
2

< sup {||glle7 o Mellacay: Fe LI(R), IIflliey <1} < Ksllgllrca)
which completes the proof. =

The next result, in a similar form, was already used in [4].

LEMMA 6. — Let a € Lip(Q), a = © (C positive constant) in Q, and u e H'(Q) be a sol-
ution of the equation

alu, v) = J[fov + En:f,vwl] de YveH{(Q)
o 1=1

(where the bilinear form af-, -) is defined in (8)). Then the function au is solution of
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the equation

a*(au, v) = j[(afo+ ilfiaxi) v+ _iaf;vxi] de  Voe HI(Q),

2

where we define
n n
(53) a*(u,v) = I[ 2 Uy Uy + E(bi*uxiv+di*uvwi)+c*uv]dac,
9 i,j=1 i=1
af =a; (1,j=1,2,...,n),

n
bi* =b2+ Zaijamj/a (’l:=1,2,...,n),
i=1
(3
d¥ =d;— 2 aza,la (i=1,2,..,n),
i=1
n n
c*i=c— 2 (bi—d) a,la- Zlaijamaxj/az.
i=1 ij=
ProoF. — The proof can be left to the reader. =

3. - Main result.

THEOREM 1. — Suppose that the bilinear form ay(-, -) (defined in (2)) satisfies the
same hypotheses of Lemma 1 and that there exists p >mn such that b;e XP(Q) (i=
=1, 2, ...n). Then the Dirichlet problem (1) has a solution u, satisfying (2).

PROOF. — We partially follow the same procedure of [4], [5]. First of all, according to
Lemma 4, it is sufficient to show that the Dirichlet problem

ao(u, v) = jfudx Yoe HA(Q),
(54) Q

ue H} ()

has a solution whenever fis given in H{ () or, more generally, in L2(Q); this in turn is
equivalent to show the a priori inequality

(55) llull20) < K llfll2co
for the solution u of (54). If u is a solution of (64) and fe L *(Q2), we know that
(56) llully = @) < (/e ISl =2
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therefore it would be sufficient to prove an inequality such as
(67 llullz 1y < Ksllfllz 10

in order to get (55) by interpolation. Using again a duality argument, we remark that
(57) is equivalent to

(58) oz = 0 < Ko llgll =0
where we H}(R) is the solution of the dual problem

69 ag(w, v) :=ayv, w) =

=” 2 U Uy, + Ebwv +cwv]dx—fgvdx Yoe HH(Q).

i,j=1

We also observe that, by the same duality arguments as above, the inequality
(60) ol oy < (L/eo) llgllzrco

holds, since it follows from (56). Finally, as in [4], [6] without loss of generality we can
suppose 2 to be bounded, provided we prove that all the constants in the a priori in-
equalities are independent on Q.

By using the above lemmata, we prove (58) as follows. Let {Qj}, .~ be a family of
cubes of constant side length r=1 which+cover R” as in Lemma 3;

let ¢ :=yxq, (h=1,2,...), so that X ¢,(x) =1 a.e. in R" Let g be a given
K=1
function in L * () and consider the solution w; of the Dirichlet problem
ao’(wh,v)=f¢hgvdw Yve Hy (),
(61) 9
w,e H} ().

Since ¢, has compact support and geL *(£), obviously ¢, geLq(Q) for all ¢=1,
therefore from (60) it follows

(62) llown Il 10y < (1/eo) | w9l e ce)-
From (62) and the results of [2] (see Remark 4 in particular) we easily deduce

(63) llwn I = 2y < Koo 19llL = 2y

(note that ||¢ , gllL10) < ¢ 19lL = @)- Inequality (63) has the same form as (58), so by the
interpolation argument above we have, for the time being, existence and uniqueness of
the solution w,, of problem (61), and this is true for any heN.

Notice also that it turns out hE wy, = w because Z ¢rg=g¢ in  and because of
1

uniqueness which follows from (60). (As a matter of fact smce we have temporarily sup-

posed 2 to be bounded, the sums with respect to % are finite, so Eh:wh obviously belongs
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to H{(£2)). From (63) the a priori inequality for w in L * () would follow, but the con-
stant would be dependent on 2 (more precisely, on the maximum value of € N such
that @, N 2 = @). Therefore a different argument must be used, as in [4], [5].

Let «;, be the center of the cube @, (for k=1, 2, ...) and u a positive constant; de-
fine a,(x):=e”* | According to Lemma 6, the function a,w, satisfies the
equation

(64) a*(a,wy, v) = fah¢hg”dx VUEH()I(Q)
15

where the bilinear form a*(.,.) has coefficients
a‘i,;F :=aji (i’j= 17 2’ 3 sy ’ﬂ),
b :=y21aﬁ(xj—whj)/|x—xh |, i=1,2,...,n)
i=

di =b;—pu 2 ay@; —my)/|z —m |, (=1,2, ..., m)
=

n

n
c*i=c +ﬂ,zlbi(90i ~ap)/ |~ | ~p? 2 laij(xi = @)% — Tny)/ | @ — @ |2
i= i, j=

From the expressions of these coefficients and Lemma 5’, we can choose # > 0 so small
that Lemma 5' can be applied: therefore we deduce the following a priori inequality for
the function a,w;:

(65) larwillose) < Kellan @ rglsay  (R=1,2,..)

for some p = 1. Furthermore, obviously

(66) llo @ n9llL7 0y < Kur llgllz = o

where the constant K;; depends only on % and u. So by applying the results of [2] we
deduce

67 ||a Wh HL ) S Km[“a 1 W, ”LT’(Q) + ||a P hg”LT’(Q)] .

From the above inequalities and the definition of a, it follows

(68) lwp(2) | < Kige 1 l|glL=@ ae in 2 (k=1,2,..)
whence

0 + o
(69) |w(x) | < h§—:1 |w, () | SK13”!]“L""(sz)hgle_”lwnmhl ae. in Q.

Since the series on the right hand side converges, (568) is proved and the assertion fol-
lows as explained before. =
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