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Dirichlet Problem for a Divergence Form Elliptic Equation 
with Unbounded Coefficients in an Unbounded Domain (*). 

M_AURIZIO CHICCO - MARINA VENTURINO 

A b s t r a c t .  - We prove existence and uniqueness of the solution of the Dirichlet problem far a class 
of elliptic equations in divergence form with discontinuous and unbounded coefficients in 
unbounded domains. 

1.  - I n t r o d u c t i o n .  

In 1985 in two interesting papers [4], [5] P. L. Lions considered the Dirichlet 
problem 

(1) I ao(u, v) = (T, v) V v e H I ( Q ) ,  

[ u e H l ( ~ )  

where T is given in H - 1 ( ~ ) .  The bilinear form ao(', ") is defined as follows: 

(2) ao(u, v):= ~l ~ aijuxivx~ + ~ biux~ v + cuvl dx 
~[ i , j= l  i=1 J 

where aijeL| ~ aijtitj>~v]t] 2 for all t e R  ~ (with v a positive costant), bie 
i , j = l  

e L  | (i = 1, 2, ..., n), c/> Co (positive constant). The open set ~ ,  contained in R ~, is 
not supposed to be bounded. The main result of the works by P. L. Lions is that, under 
the hypotheses above, there exists a unique solution of problem (1) and the a priori 
inequality 

(3) Ilu]]nl(~) ~< K111~[H-i(~) 

holds, where K1 is a constant depending on n and the coefficients of the bilinear form 
a0(', "). 

(*) Entrata in Redazione il 22 aprile 1999. 
Indirizzo degli AA.: Dipar-timento di Metodi e Modelli Matematici, Universit~ di Genova, P.le 

Kennedy Pad. D, 16129 Genova, Italia. E-mail: chicco@dima.unige.it, venturin@dima.unige.it 
We are grateful to dr. Laura Servidei for correcting English style. 
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The aim of the present  note is to extend these results assuming the coefficients b~ to 
belong only to the space X P ( ~ )  (i = 1, 2, . . . ,  n)  with p > n (see Definition 1 below or 
[2]). The proof is similar to the one in [4], [5]; we add some new remarks (e.g. Lemma 3). 

2 .  - P r e l i m i n a r i e s .  

Le t  ~ be an open subset of R"; for simplicity we assume n I> 3. 

DEFINITION 1. - Let 

w(f ,  p ,  5) := sup {IIfIILp(E): E measurable,  E r  ~ ,  meaN E ~< 5} 

X P ( ~ )  := { f � 9  w(f ,  p ,  6) < + oo Y5 > 0} 

X$(~2) := { f � 9  llm w(f ,  p ,  6) = 0} 
6--*0 + 

F or  fur ther  propert ies of these spaces, see [2]. 

n 
LEMMA 1 (Uniqueness). - I f  aij �9 L ~ (Y2) (i, j = 1, 2, ...n), ~, aij ti tj >. vat[ 2 for  all 

i , j = l  
t � 9  R ~, b~�9 (i = 1, 2, ..., n), c >I Co in Y2 (v, co positive constants), c � 9  
then problem (1) (with the bilinear form ao(', ") defined in (2)) has at most one 
solution. 

PROOF. - I t  is sufficient to show that  if u �9 H 1 (~ ) ,  ao(u,  v) ~< 0 Vv �9 H I (Q) ,  v/> 0 in 
~ ,  then u ~ 0 a.e. in ~ .  Arguing by  contradiction, suppose that  m := ess supu  > 0. 

Q 
Choose t with 0 < t < m and let u~ := m a x ( u  - t ,  0). Since u �9 H I ( ~ ) ,  in part icular  u �9 
�9 L2(Q) ,  then ua > 0 only in a set of finite measure.  Therefore,  replacing v with ut in (1) 
and observing that  u~i = (u~)a a.e. in ~ t  := { x � 9  ~ :  t < u(x) < m}, it follows from the 
assumptions above that  

n 
22 (4) c011 llb( ) + s E IIb ll.( ,)li( ) liL 

i = l  

where S denotes the constant in the Sobolev inequality 

[[~b[[L2~(.- 2)(a .) ~< S[kb ~ ][L2(R .) V~b �9 Co 1 (R ~) 

(It is well known that  the constant S depends only on n: see e.g. [8].) We can choose t so 
close to m t h a t  meaN ~2t be as small as we like, and since b i e X ~ ( Q )  , w e  obtain 

n 
E [[b~ [[/'(a0 < v/S. Then from (4) we get  

i= l  

u t = 0  a.e. in .(2, 

which is a contradiction, since m := ess supu  > ' t .  �9 

The following lemma is a more precise version of the classical Sobolev inequality. 
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LEMMA 2. - Let Q be a cube in R" with side length r, and u e H I ( Q ) .  Then there 
exists a constant K2, depending only on n, such that 

(5) IlullL~(~-2)(Q) ~< K2 [(1/r) IlullL~(Q) + Ilu~ 11/2(Q)] �9 

PROOF. - A proof of this result can be found e.g. in [3]; we give an outline only for 
convenience of the reader. Firs t  of all, it is sufficient to consider the case r = 1, and the 
general case easily follows by a change of variables (dilation). 

We can use inequalities (5.7), (5.8) of [3] replacing Y2 with Q, l = 1, p = 2, and 
obtain 

(6) [[U]IL~(~-~)(Q) ~ 2 (n-  2)/(2,~-2)Ilull~(~-~),,,~,(Q) § 4(n  - 1 ) / (n  - 2) ~ [lu~ Ib(Q). 
i=1 

Since 2 < 2(n - 1)/(n - 2) < 2n/(n - 2), then from Lemma 3.1 of [3], with Pl = 2, p = 
= 2(n - 1)/(n - 2), P2 = 2n/(n - 2), e = 2 -(a~-4)/(2"-2), we get: 

(7) IlUlIL (~-~)~(~-~)<Q) ~ 2 - ( ~ -  ~) / (~-  ~) I lu l l /~(~ ~)(Q) + 2 ~ ( ~ -  ~)/<~ ~)(~- ~) IlulI/~<Q). 

We combine (7) and (6) and finally get 

IlUIIL~(~-~'(Q) ~ 2(~n-~)/(~-~)IiUlIL~(Q)+ 8(n  - 1 ) / (n  - 2)  ~,, Ilu~IIL~(Q) 
i = l  

whence the conclusion (5) easily follows. �9 

DEFINITION 2. - (Stampacchia [7]). The bilinear form 

(8) 
. . } 

a(u, v) : =  laijuxivxj + ~, biu~v + ~ diuv~ + cur dx 
i, = i = l  i=1  

is said to be coercitive on Ho~ ( t~ ) i f  there exists a positive constant cl such that 

a(u, u) >1 C 1 HU]]2~(~) VU ~ H~ (f2). 

The following result is an extension of theorem 3.2 of Stampacchia [7]. 

LEMMA 3. - Suppose aij ( i , j =  1, 2, ..., n) as in Lemma 1, bi, dieX$(tg)  ( i =  
= 1 ,  2, . . . ,  n), c eXo~/2(Y2), a(., .) defined as in (8). 

Then there exists a constant ~o (depending on the coefficients of a(., .)) such that 
the bilinear form 

a(u, v) + 2 f uvdx  
Q 

is coe~itive on H~(D) whenever 2t ~,to. 

PROOF. - Let  {Qh}h~i be a family of open cubes in R n, with constant side length r, 
+oo 

such that  U ~ = R n and Q~ cl Qh = ~ if h ~ k. By the assumptions above and Definition 
h = l  
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1, we can choose r > 0 such that  

n n 

(9) E IIb~ IIL~(Q~) ~ r iSK2,  Z IId,~ IIL'<(Q,,.) ~ v/8K2, IlcllL~(o,,) ~ ~/8K#,  
i = l  i = l  

(h = 1, 2, ...). 

Then, taking Lemma 2 into account, if u e H l ( R  ~) it turns out: 

(10) 
n 

Qh 

(v/s) Ilu,= I h.,.(Q,,)[(1/r) Ilull~:(Q,.) + Ilu~ II--(Q,,)] 

(v/4)llu~llb(Q,) + (v/32r~)llullg~(Q~) (h = 1, 2,  . . . )  

and, by the same procedure, 

(11) S Id~u~'uldx ~ @/4)llu, llb(Q,)+ (v/32r~)llulll'(Qh) 
i=1 qh 

( h = l ,  2, ...) 

(12) f I cu 2 I dx < II~ll~(Q,,)llullb'<"-~>(Q~) 
Qh 

~< (v/4)llu~tlb(Qh)+ (v/4r2)llullb(Qh) (h = 1, 2, . . . ) .  

Now suppose u ~ H I ( y 2 ) ;  from (10) we easily deduce 

I + stY, I (13) bi u~ u dx  <<- ~, bi u~, u dx  <~ 
i= h = l  i= 

t~ n Qh 

~(v/4) ~ f u2 dzc + (v /32r  2) ~ f 
h = l  h = l  

~nQh -QnQh 

u s dx  = (r/4)Ilu~ 11~2(~) + (v /32r  2) IluH~2(~) 

and similarly 

(14) n i f ~=ldiUx~ u d x  <~ ... <. (V/4)IlU~II252(~)+ (r/32r2)llUl1252(a), 
i= 

(15) ~cu~dx I <- . . .  <~ (-/4)lfu~lli~(~)+ (~/4r~)llullb(~). 

From (13), (14), (15) and uniform ellipticity the conclusion follows, with )~o = 
= 5 r / 1 6 r  2 + v/4 and Cl = r/4. �9 



MAURIZIO CHICCO - MARINA VENTURINO: Dirichlet problem, etc. 329 

Following Stampacchia [7] we have, first of all, that the Dirichlet problem 

a(u, v ) + , ~ u v d x  = (T, v) YvEH~(~) ,  
(16) 

(with T given in H-x(t2))  has a unique solution if;t I> 20. Notice, furthermore, that the 
Dirichlet problem 

(17) J a(u, v) = (T, v) Y v e H l ( Q ) ,  
[ u~Hl(~) 

has a unique solution if the same holds in the particular case (T, v) = ~wvdx with w e  
t2 

e Hl(tg).  In fact we have the following result: 

LEMMA 4. - Suppose that the Dirichlet problem 

a(u, v) = fwvdx  VveH~(t2) ,  
(18) 

ueH~(t2) 

has a unique solution whenever w is given in Hi(g2), and the a priori inequality 

IlUllL:(~) <- Ka liwllL:< > 

holds. Then problem (17) also has a unique solution, and it turns out 

(19) IlulIL:< > ~< K4 IITIIH-:<~) 

where K4 depends on the coefficients of a(., .) ( K  4 can be explicitly evaluated). 

PROOF. - Let ;t I> ~t o (defined in Lemma 3). According to what we observed before, 
the problem 

a(ul, V)+s = (T, v) VveH~(Q) ,  
(20) 

u l  e Ho  1 (~) 

has a unique solution Ul, which satisfies the a priori inequality 

(21) Ilul llSl(a) <~ (1/Cl)IITIIH-I<Q) 

where Cl is the constant in Definition 2. (Inequality (19) can be easily proved by using 
the fact that the bilinear form a(u, v) + 3, ~uvdx is coercitive on Ho~ (~)). Then we con- 
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sider the problem 

t a(u2, v) = f u l v d x  V v e H I ( t o ) ,  
(22) 

u2 �9 

which by hypothesis has a unique solution u~, and the inequality 

(23) IIL2( ) -< K3 ]lUl IIL2(~) 

holds. From (20), (22) we get 

(24) ~ a(ul + ~u2, v) = (T, v) Vv �9  

[ u~ + 2u2 �9  

i.e. Ul + 2u2 is a solution of problem (17), and it is unique by hypothesis. Fur thermore  
from (21), (23) we deduce 

(25) HUl + 2wz HL~(~) <. (1/cl)(1 + 2Ka)ll~lH-'(a) 

whence (19), with K4 = (1/Cl)(1 + 2 o K 3 ) ,  and 2 o as in Lemma 3. �9 

The following Lemma is an extension of a result  by Miranda ([6], Theorem 
4.1). 

LEMMA 5. - Let u �9  be a solution of the equation 

(26) a(u, v) = f f v d x  Vv �9  
Q 

with f � 9  Lq(to) Vq >t qo (qo constant, qo >t 2), bi � 9  (i = 1, 2, .. . ,  n), di � 9  
with p > n ,  c = c '  +c", c ' ~ c o  (co positive constant), c' �9 c" �9 
�9 X~p/(~ +p)(to). 

Then there exist e > O, ~ >1 qo , K5 > 0 such that i f  w( di , n, 1) < e ( i = 1, 2, ..., n ), 
(o( c", n/2, 1 ) < s, then 

llullL ( ) K5 IIflIL ( ) 

PROOF. - By Remark 3 of [2] applied to the coefficients di, c", it turns out di e X~(to)  
(i = 1, 2, . . . ,  n), c" �9  X0~2 (to), so we can apply the Theorem of [2] obtaining u �9 L ~ (to). 
Therefore if ~ �9 R,  ~ I> 0, then v := l ul y § 1 sign (u) �9 H l( t0) .  By  choosing v as a test  
function we find (since v~ = ( r  + 1) lulrux~ a.e. in to): 

(27) 
~t 

f a~ju~ivx~dzc >~ v($ + 1) f lul~ u:  dx . 
i , j = l  

Q t~ 

Furthermore,  let {Qh}h~N be a family of cubes of side length r > 0, as in Lemma 3. We 
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have, by HSlder's inequality and Lemma 2, 

(28) 
qh 

<K2.'~IIb~IIL~(Q~)IlluI~/2u~hL~<Q,) Ili l 7*lllul 
i = l  [ r  ] 

<~K2 ~ llbilli,(Q~)[(7* + /~/2)lllul y/2~ L22(Qh) ~- 1/(2r2/~)lllul ~* 1122(Q~)] 
i=1 

Here 7"  := 1 + 7/2, r > 0 is as in Lemma 2 and/~ > 0 arbitrary.  Now let us choose r 
such that  0 < r ~< 1 and 

n 
(29) K2 ~, libillL,(qh) <~ v/4 (h = 1, 2, ...) 

~=1 

this is possible according to the assumptions on the coefficients b~ (i = 1, 2, . . . ,  n). 
- F u r t h e r m o r e  choose/~ in (28) such that  

(30) /~ = v/(2c0r2). 

Therefore from (28), (29), (30) we deduce 

Qh 

},/2 2 2 2 ~ [V(7*-I-VI(4cor2))I4]Illul UxlIL (Qh)-I- (Col4)IllulT*IIL2(Qh) ( h ~ l ,  2 ,  . . . ) .  

I f  we choose 

7:----- m a x  (1 ,  rl(2cor2), q o - 2 )  (32) 

we get 

v/( 4Co r2) <~ 7/2 

With all these choices (31) becomes 

Qh 

U ~//2 2 2 ~/* 2 2 <~[v(l+y)/4]ll] ] u~HHL<Qh)+(Co/4)IOiui ]]L(Qh) ( h = 1 , 2 , . . . )  

whence, by summing on h, we finally get 

I 
By a similar procedure we can evaluate the other terms of the bilinear form a(u, v). We 
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have (again, by HSlder's inequality and Lemma 2): 

Qh 

n 

~< K2 - 1 E  IId~ll.(Q.) II lu I~  u~ II~=(Q.) 111 u I~* II~(--~r 
i = l  

~=~ IId~ll.cQ,)lllul~u=ll~ (Q.) 7111ul' II~(Q.) + Illul~/~u=ll~(Q.) 

~ IId~ll~.(Q.)[(1 + r * ) l l  u ~/=o. ~ ~ L (Q, )+  ( /4 )11, , I1~ 1 . 1 r 2 . , . , U , Y * , , 2 ( Q h ) .  
i = 1  

whence, by summing over h 

t~ 

Similarly again 

(37) 
Q Qh 

(h = 1, 2, ...) 

~ g  ~ 'C"IIL~(Q~)[~*IlluI~/~U~ L ~(Q~) + (1/T)IlluI~§ ~ 

2 ,, . ~  (1/r=)lllul~. =~ ] L (Qa) 

( h = l ,  2 . . . .  ) 

and by summing over h 

From (27), (34), (36), (38) we easily get the result. In fact if we choose s such that 

(39) O < s<<. min (cor2/[K2(r + l )], cor2/(SK~), v/[2K2(7 + 4)], v/[K~(7 + 2)2]} 
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since 0 < r ~< 1, then from (36), (38) 

(40) l d~uv~idx <~[v(~ + l )/4lHlulr/eu~ll2i2(~) + (Co/4)tl]ul IlL(a) 
i ~ l  Q 

(41) ~c"uvdx I ~< [v(r + 1)/4]I[lU]r/2U~II2L2(,)+(Co/4)H]U]r'H2L2(a). 

From (27), (34), (40), (41), using (26) we deduce 

r + l  
(42) IlfllL- ( )llullL -( ) I> 

>I f.fvdx = a(u, v) >I v(r + 1)l[lulytZux Hi2(a)+ CoHlU] r• Hi~(9)+ 

+ ,/4 + + 1)lllul  u llb(.)- (3Co/4)ll lul lib(.)  (col4)llulli s 
whence finally 

(43) Ilu]lL~ § ~< (4/Co)Ilflli~§ 

The assertion is therefore proved with ~ := ~ + 2, K5 := 4/Co, ~ given by (32), and e de- 
fined as in (39). �9 

I t  is now convenient to define the (,dual bilinear form- with respect  to a(u, v) as 
follows: 

(44) a ' (u ,  v) := a(v, u) Y u ,  v e H~(~2) 

I t  is clear that, going from a(u, v) to a ' (u ,  v), we interchange the coefficients bi with 
the di's. Using the fact that  LP(~2) and L q ( ~ )  are dual spaces if 1/p + 1/q = 1, it is easy 
to prove that  Lemma 5 is equivalent to the following: 

LEMMA 5'. - L e t  weHo~(~) be a solution of the equation 

(45) a(w, v) = ~gvdx Y v e H l ( ~ )  
Q 

with g eLV(~)  Vpe  (1, Po) (Po constant, po~ (1, 2]), d.i ~ X ~ ( ~ ) ,  bieXq(Q) with q > n 
( i = l , 2 , . . . , n ) ,  c = c ' + c " ,  c ' e x ~ e ( ~ ) ,  c'>~co (Co positive constant), c"e 
e X ~ql(€ + q) (~2). Then there exist e > 0, ~ e (1, P0 ], K6 > 0 such that i f  w(bi, n, 1 ) < e (i = 
= 1, 2, . . . ,  n), w(c", n/2, 1) < e, then 

(46) IIWllL~(a) <~ K6 HgHL~(~) 

PROOF. - As in [4], [5], we may assume without loss of generality that  ~2 is bounded, 
provided the costants in the a priori inequalities we prove are independent on 52. Notice 
also that  we have supposed the coefficients bi (i = 1, 2, . . . ,  n) to be sufficiently small, 
instead of the di's as in Lemma 5. Therefore it is possible to apply Lemma 5 provided we 
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replace the bilinear form a(u, v) with a '  (u, v) := a(v, u) since, as we have already re- 
marked, in this way the roles of the coefficients b~ and di are reversed. 

Let w be as in the hypothesis; we want to show 

(47) I[wlli~(a) <<. K6 ][g]lL~(~) 

with Ks = Ks, 1/~ + 1/9 = 1, Ks, ~ as in Lemma 5. From well known results (see e.g [1]) 
we have 

(48) ,,Wl,L~(,) = sup { J wf  dx : f ~ L ' ( ~2 ), [[fllL ,(,) <<. l } . 

Let feLq(~9) Yq I> 2. Consider the Dirichlet problem 

a ' (u ,  v) = f f v d x  YveHol(~2), 
(49) 

The solution u is unique by Lemma 5. Since ~2 is supposed to be bounded, the Riesz- 
Fredholm theory is valid and uniqueness of u implies its existence. By applying again 
Lemma 5 to the solution u, we get the existence of a number ~ >I 2 such that 

(5o) IlullL ( ) K5 I[fllL ( ). 

From (45), (49) it clearly follows 

(51) a ' (u ,  w ) =  I f w d x =  I g u d x .  
Q 1"2 

From (48), (51), Lemma 5 and HSlder's inequality we finally get 

~< sup {llgllL~(~)Ilull~(~): f e  L ~ (19), II/IIL ( ) -< 1 } ~< Ks Ilgll/ ( ) 

which completes the proof. �9 

The next result, in a similar form, was already used in [4]. 

LEMMA 6. - Let a e L ip~) ,  a >I ~ (~ positive constant) in ~2, and u e H 1 (~2) be a sol- 
ution of the equation 

2o -} a(u,v)= Vv Hd( ) 

(where the bilinear form a(., .) is ~ f i r~d in (8)). Then the function au is solution of 
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the equation 

j { ( - ) -  } a*(au ,  v ) =  afo + i=~l/~a= ~ v +  i~=l afire' dx V v e H / ( t ) ) ,  

where we define 

(53) sI" } a*(u ,  v ) : =  ~ aCu~v~j+ ( b * u ~ v + d * u v ~ ) + c * u v  d x ,  

a.*. :=a~j ( i , j = 1 , 2 ,  . , n )  * ~  , 

n 

b~* := bi + ~ aija~r 
j = l  

( i =  1, 2, ..., n) ,  

n 

di* := d~ - ~, aji a ~/a (i = 1, 2 . . . .  , n) ,  
j = l  

n 

c* := c - ~, (bi - d i )  a J a  - 
i = l  

~ laija ~ a x~/a2. 
i , j=  

PROOF. - The proof can be left to the reader. �9 

3. - M a i n  r e s u l t .  

THEOREM 1. - S u p p o s e  that the bilinear form ao(', ") (defined in (2)) satisfies the 
same hypotheses of  L e m m a  1 and that there exists p > n such that b ieXV(t~)  (i = 
= 1, 2 . . . .  n). Then the Dirichlet problem (1) has a solution u,  satisfying (2). 

PROOF. - We partially follow the same procedure of [4], [5]. First of all, according to 
Lemma 4, it is sufficient to show that the Dirichlet problem 

(54) 
ao(u, v) = ] f v d x  Yv eHol(f2), 

Q 

u e H l ( t 2 )  

has a solution whenever f is given in H01 (~9) or, more generally, in L 2 (~9); this in turn is 
equivalent to show the a priori inequality 

(55) ]]UlIL2(~) <~ K 7 IlfllL2(~) 

for the solution u of (54). If u is a solution of (54) and f e  L ~ (t9), we know that 

(56) IlUlIL | (s~) <~ (1/Co)IIflIL ~ (s~) 
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therefore it would be sufficient to prove an inequality such as 

(57) llUllLl(~) ~< Ks llfllLl(~) 

in order to get (55) by interpolation. Using again a duality argument, we remark that 
(57) is equivalent to 

(58) Ilwll  =(~) ~< g~ll.qlL o ( . )  

where w e H01(~9) is the solution of the dual problem 

(59) ao' (w, v) := ao(v, w) = 

} s i, 1 aijwxjvxi + ~ biwv~:~ + cwv dx gvdx YveHl(tT).  
i = l  D 

We also observe that, by the same duality arguments as above, the inequality 

(60) IIWlIL~(~) <~ (1/Co)]IglIL~(~) 

holds, since it follows from (56). Finally, as in [4], [5] without loss of generality we can 
suppose Q to be bounded, provided we prove that all the constants in the a priori in- 
equalities are independent on ~9. 

By using the above lemmata, we prove (58) as follows. Let {Qh}h~N be a family of 
cubes of constant side length r = 1 which cover R n as in Lemma 3; 

T ~  

let q~h:=XQh ( h = l ,  2, ...), so that ~ h ( x ) = l  a.e. in R n. Let g be a given 
h=l 

function in L | (~9) and consider the solution wh of the Dirichlet problem 

(61) f ag(wh, V) = f 

Wh e Hol ( ~ ) . 

r Yv e Hol (tg), 

Since ~bh has compact support and g e L ~ ( t T ) ,  obviously dphgeLq(ff2) for all q~> 1, 
therefore from (60) it follows 

(62) Ilwh IIL'(~) ~< (1/Co)IIq$ hgllil(~). 

From (62) and the results of [2] (see Remark 4 in particular) we easily deduce 

(63) Ilwh IlL ~(tT) ~ Klo I1~ b hgllL ~(tT) 

(note that IlOhgllLl(~)<~ II~hgllL| Inequality (63) has the same form as (58), so by the 
interpolation argument above we have, for the time being, existence and uniqueness of 
the solution wh of problem (61), and this is true for any h e N. 

+r +r162 

Notice also that it turns out ~ wh=w because ~ ~hg=g in Q and because of 
h = l  h = l  

uniqueness which follows from (60). (As a matter of fact, since we have temporarily sup- 

posed t9 to be bounded, the sums with respect to h are finite, so ~wh obviously belongs 
h 
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to Hl(t~)).  From (63) the a priori inequality for w in L ~(~2) would follow, but the con- 
stant would be dependent on t9 (more precisely, on the maximum value of h �9 N such 
that Qh A ~ ~ 0). Therefore a different argument must be used, as in [4], [5]. 

Let xh be the center of the cube Qh (for h = 1, 2, ...) and it a positive constant; de- 
fine a ~ ( x ) : = e  ~l~-~hl. According to Lemma 6, the function ahwh satisfies the 
equation 

(64) a*(ahwh,  v) = f ahc~hgvdx VveHol(~2) 
~J 

where the bilinear form a* ( . , . )  has coefficients 

a~ :=aji ( i , j =  1, 2, ,  ..., n) ,  

bi* :=it ~ a j ~ ( x j - x h j l / I x - x h  l, (i = 1, 2, ..., n) 
j = l  

di* := b i - i t  ~ aij(xj - xhj)/lx - Xh l, (i = 1, 2, ..., n) 
j = l  
n n 

c* := c +it i~ lE bi(xi - xhi)/lx - xh I _ i t 2  ,~=1 aij(xi - xhil(xj - xhj)/lx - xh 12 

From the expressions of these coefficients and Lemma 5', we can choose it > 0 so small 
that Lemma 5' can be applied: therefore we deduce the following a priori inequality for 
the function a h wh: 

(65) IlahwhllL~(~) <<- K611ah~hglli~(~) (h = 1, 2, ...) 

for some ~ >t 1. Furthermore, obviously 

(66) Ila h ~) hgllL~(~) ~ K l l  IIglIL ~(~) 

where the constant Kll depends only on n and it. So by applying the results of [2] we 
deduce 

(67) 

From the above inequalities and the definition of a h it follows 

(68) Iwh(x) l <~ K18e -~,l~-~hl IlgllL~(~) a.e. in ~ (h = 1, 2, ...) 

whence 

-{-oo 

(69) Iw(x) l <~ h=l ~ IWh(X) l<~KlaNgllL~(~)h~=le-I'l~-~hl= a.e. in ~ .  

Since the series on the right hand side converges, (58) is proved and the assertion fol- 
lows as explained before. �9 
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