Esercizio. Dimostrare che risulta

(1)
$$\arcsin x + \arccos x = \pi/2 \qquad \forall x \in [-1, 1]$$

Svolgimento. Come è noto, la funzione $x \to \arcsin x$ è la funzione inversa della restrizione della funzione $x \to \sin x$ all'intervallo $[\pi/2, \pi/2]$ (nel quale essa è strettamante crescente), in modo che risulta

(2)
$$\arcsin(\sin x) = x \quad \forall x \in [-\pi/2, \pi/2]$$

(3)
$$\sin(\arcsin x) = x \qquad \forall x \in [-1, 1]$$

Analogamente la funzione $x \to \arccos x$ è la funzione inversa della restrizione della funzione $x \to \cos x$ all'intervallo $[0, \pi]$ (nel quale essa è strettamante decrescente), in modo che risulta

(4)
$$\arccos(\cos x) = x \quad \forall x \in [0, \pi]$$

(5)
$$\cos(\arccos x) = x \quad \forall x \in [-1, 1]$$

La tesi (1) può essere equivalentemente scritta

(1')
$$\arccos x = \pi/2 - \arcsin x \qquad \forall x \in [-1, 1]$$

Si osservi che, per ogni $x \in [-1, 1]$, i due membri della (1') appartengono entrambi all'intervallo $[0, \pi]$, nel quale la funzione $x \to \cos x$ è strettamente decrescente, quindi iniettiva. La (1') sarà pertanto provata non appena si dimostri che la funzione $x \to \cos x$, applicata a ciascun membro della (1'), fornisce lo stesso risultato.

È ben noto dalla trigonometria che

$$\cos(\pi/2 - \alpha) = \sin \alpha \quad \forall \alpha \in \mathbb{R}$$

per cui, calcolando il coseno dei due membri della (1'), si trova:

(6)
$$\cos(\arccos x) = x \quad \forall x \in [-1, 1]$$

(7)
$$\cos(\pi/2 - \arcsin x) = \sin(\arcsin x) = x \quad \forall x \in [-1, 1]$$

Dalle (6), (7) segue la (1') e la tesi è dimostrata.