Esercizio sull'estremo inferiore

Sia α un numero reale positivo; dimostrare che si ha

$$\inf\{|m - n\alpha| : m, n \in \mathbb{N}, m + n \ge 1\} = 0$$

Svolgimento. Se α è un numero razionale, il risultato è banale (e in questo caso l'estremo inferiore è anche minimo); supponiamo quindi d'ora in avanti α irrazionale.

Sia $\varepsilon > 0$ arbitrario; la tesi equivale a dimostrare che esistono due numeri naturali (non entrambi nulli) p,q tali che

$$(1) |p - q\alpha| < \varepsilon$$

A tale scopo consideriamo la successione

(2)
$$j\alpha = [j\alpha] + x_j \quad (j = 1, 2, \dots)$$

dove $[j\alpha]$ indica il più grande numero naturale che non supera $j\alpha$. Se poniamo (per definizione) $n_j := [j\alpha]$, la (2) si può riscrivere

$$j\alpha = n_j + x_j \quad (j = 1, 2, ...)$$

Evidentemente è

(3)
$$x_j \in (0,1) \quad (j=1,2,\dots)$$

e i numeri $\{x_j\}_{j\in\mathbb{N}}$ sono tutti tra loro diversi (essendo α irrazionale).

(Dimostriamo brevemente questa affermazione. Supponiamo per assurdo che esistano due numeri naturali j, k tali che j < k e $x_j = x_k$, cioè (dalla (2'))

$$(k-j)\alpha = n_k - n_j$$

assurdo in quanto ne seguirebbe $\alpha = (n_k - n_j)/(k - j)$, ma α è irrazionale).

Dividiamo ora l'intervallo (0,1) in un numero finito di intervallini di lunghezza (uguale) minore di ϵ ; poiché la successione $\{x_j\}_{j\in\mathbb{N}}$ è fatta di infiniti elementi tra loro diversi, esiste (almeno) uno di tali intervallini che contiene a sua volta infiniti elementi diversi della successione. Ne scegliamo uno che chiamiamo x_r e poi un altro che chiamiamo x_s ; possiamo farlo in modo che sia

$$(4) s > r, n_s > n_r$$

Inoltre, essendo x_r e x_s nello stesso intervallino, si ha $|x_r - x_s| < \epsilon$. Dalla (2') segue allora

$$(5) |(s-r)\alpha - (n_s - n_r)| < \epsilon$$

La tesi (1) è quindi provata con $p = n_s - n_r$, q = s - r. \square