Analisi matematica I – Ingegneria gestionale Prova scritta parziale – 31 ottobre 2018

COGNOME	 NOME				
	numero di matricola				

N.B. Giustificare ogni affermazione.

Esercizio 2. Sia $f: \mathbb{R} \to \mathbb{R}$ la funzione definita da

$$f(x) := \begin{cases} \frac{1}{x} - \frac{1}{\sqrt{x^2 + \arctan x^3}} & \text{se } x > 0\\ \frac{3}{\pi} \arctan(x+a) & \text{se } x \le 0 \end{cases}$$

essendo a un parametro reale.

- 1) [p. 2] È vero che f è continua in $\mathbb{R}\setminus\{0\}$ per ogni $a\in\mathbb{R}$? Se sì perché?
- 2) [p. 7] Stabilire per quali valori del parametro a (se ce ne sono) la funzione è continua in 0.
- 3) [p. 2] Per ogni $a \in \mathbb{R}$ calcolare (se esistono) i limiti di f per $x \to +\infty$ e per $x \to -\infty$.
- 4) [p. 4] Stabilire se esistono valori del parametro a per i quali f risulti sia continua in \mathbb{R} sia iniettiva.

Svolgimento

1) Nell'intervallo <u>aperto</u> $(0, +\infty)$, per ogni $a \in \mathbb{R}$, la funzione f coincide con una funzione continua, in quanto ottenuta da funzioni continue tramite le operazioni di somma, prodotto e composta; più precisamente, in $(0, +\infty)$ f coincide con la differenza tra la potenza di esponente -1 e la funzione composta la cui componente esterna è la potenza di esponente $-\frac{1}{2}$ e la cui componente interna è la somma della potenza di esponente 2 e della composta della potenza di esponente 3 con l'arcotangente. Di conseguenza, f è continua in $(0, +\infty)$.

Nell'intervallo <u>aperto</u> $(-\infty, 0)$, per ogni $a \in \mathbb{R}$, la funzione f coincide con il prodotto di una costante per la composta di un polinomio con l'arcotangente, e quindi con una funzione continua. Pertanto, f è continua in $(-\infty, 0)$.

Quindi f è continua in $(-\infty,0) \cup (0,+\infty) = \mathbb{R} \setminus \{0\}$ per ogni $a \in \mathbb{R}$.

2) Osserviamo innanzitutto che f è continua in $0 \iff \lim_{x \to 0} f(x) = f(0) \iff \lim_{x \to 0^+} f(x) = \lim_{x \to 0^-} f(x) = f(0)$. Dalla continuità della funzione arcotangente in $\mathbb R$ segue che

$$\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{-}} \frac{3}{\pi} \arctan(x+a) = \frac{3}{\pi} \arctan a = f(0).$$
 (1)

Ora consideriamo il limite destro. Per ogni $x \in (0, +\infty)$,

$$f(x) = \frac{1}{x} - \frac{1}{\sqrt{x^2 + \arctan x^3}} = \frac{1}{x} - \frac{1}{x\sqrt{1 + \frac{\arctan x^3}{x^2}}} = \frac{\sqrt{1 + \frac{\arctan x^3}{x^2} - 1}}{x\sqrt{1 + \frac{\arctan x^3}{x^2}}}$$

$$= \frac{\sqrt{1 + \frac{\arctan x^3}{x^2} - 1}}{x\sqrt{1 + \frac{\arctan x^3}{x^2}}} \cdot \frac{\sqrt{1 + \frac{\arctan x^3}{x^2} + 1}}{\sqrt{1 + \frac{\arctan x^3}{x^2} + 1}} = \frac{1 + \frac{\arctan x^3}{x^2} - 1}{x\sqrt{1 + \frac{\arctan x^3}{x^2}} \left(\sqrt{1 + \frac{\arctan x^3}{x^2} + 1}\right)}$$

$$= \frac{\frac{\arctan x^3}{x^2}}{x\left(1 + \frac{\arctan x^3}{x^2} + \sqrt{1 + \frac{\arctan x^3}{x^2}}\right)} = \frac{\arctan x^3}{x^3} \left(\frac{1}{1 + \frac{\arctan x^3}{x^2} + \sqrt{1 + \frac{\arctan x^3}{x^2}}}\right).$$
(2)

Poiché $\lim_{x\to 0} x^3 = 0$, dal limite notevole $\lim_{y\to 0} \frac{\arctan y}{y} = 1$ e dal teorema sul limite della composta (applicabile perché è soddisfatta la condizione I)) segue che

$$\lim_{x \to 0} \frac{\arctan x^3}{x^3} = 1; \tag{3}$$

di conseguenza, $\frac{\arctan x^3}{x^2} = x \cdot \frac{\arctan x^3}{x^3} \longrightarrow 0$ per $x \to 0$ e quindi, per la continuità della radice quadrata,

$$\lim_{x \to 0} \left(1 + \frac{\arctan x^3}{x^2} + \sqrt{1 + \frac{\arctan x^3}{x^2}} \right) = 2.$$
 (4)

Da (2), (3) e (4) segue allora che

$$\lim_{x \to 0^+} f(x) = \frac{1}{2} \,. \tag{5}$$

Pertanto, per (1) e (5), si ha che

$$f$$
 è continua in $0 \iff \frac{3}{\pi} \arctan a = \frac{1}{2} \iff \arctan a = \frac{\pi}{6} \iff a = \tan \frac{\pi}{6} = \frac{1}{\sqrt{3}}$.

3) Cominciamo con il limite per $x \to +\infty$.

Osserviamo innanzitutto che $\lim_{x\to +\infty} \frac{1}{x} = 0$. Inoltre, $\lim_{x\to +\infty} x^2 = +\infty$ e $\lim_{x\to +\infty} \arctan x^3 = \frac{\pi}{2}$ (per il teorema sul limite della composta, applicabile perché vale la condizione I), dato che $\lim_{x\to +\infty} x^3 = +\infty$ e $\lim_{y\to +\infty} \arctan y = \frac{\pi}{2}$); di conseguenza, $\lim_{x\to +\infty} (x^2 + \arctan x^3) = +\infty$, e quindi (per il teorema sul limite della composta, applicabile perché vale la condizione I)) anche $\lim_{x\to +\infty} \sqrt{x^2 + \arctan x^3} = +\infty$. Ma allora $\lim_{x\to +\infty} \frac{1}{\sqrt{x^2 + \arctan x^3}} = 0$ e quindi

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \left(\frac{1}{x} - \frac{1}{\sqrt{x^2 + \arctan x^3}} \right) = 0.$$

Ora consideriamo il limite per $x \to -\infty$.

Osserviamo che per ogni $a \in \mathbb{R}$ si ha che $\lim_{x \to -\infty} (x+a) = -\infty$; poiché $\lim_{y \to -\infty} \arctan y = -\frac{\pi}{2}$, dal teorema sul limite della composta (applicabile perché vale la condizione I)) segue che $\lim_{x \to -\infty} \arctan(x+a) = -\frac{\pi}{2}$ e quindi

$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \frac{3}{\pi} \arctan(x+a) = \frac{3}{\pi} \left(-\frac{\pi}{2}\right) = -\frac{3}{2}.$$

4) Per il punti 1) e 2), f è continua in $\mathbb{R} \iff a = \frac{1}{\sqrt{3}}$. Poniamo dunque $a = \frac{1}{\sqrt{3}}$ e vediamo se f è iniettiva. Quindi

$$f(x) = \begin{cases} \frac{1}{x} - \frac{1}{\sqrt{x^2 + \arctan x^3}} & \text{se } x > 0\\ \frac{3}{\pi} \arctan\left(x + \frac{1}{\sqrt{3}}\right) & \text{se } x \le 0. \end{cases}$$

Poiché f è <u>continua</u> in \mathbb{R} , che è un <u>intervallo</u>, si ha che f è iniettiva se e solo se è strettamente monotona in \mathbb{R} . Osserviamo che $f(0) = \frac{1}{2}$ (cf. punto 1)), e quindi f(0) è maggiore sia di $\lim_{x \to -\infty} f(x)$ che di $\lim_{x \to +\infty} f(x)$ (cf. punto 3)); ma allora f <u>non può essere</u> strettamente monotona in \mathbb{R} . Di conseguenza, f <u>non</u> è iniettiva. Pertanto, <u>non esistono</u> valori del parametro a per i quali f risulti sia continua in \mathbb{R} che iniettiva.