π è un numero irrazionale.

Dimostrazione (pubblicata da Ivan Niven nel 1947). Si ragiona per assurdo: supponiamo che sia

$$(1) \pi = p/q$$

 $\operatorname{con} p,q$ interi positivi. Consideriamo inizialmente le funzioni

$$q_n(x) = x^n (\pi - x)^n \quad (n \in \mathbb{N})$$

Si tratta di polinomi di grado 2n, e risulta $g_n(x) = g_n(\pi - x)$ ed anche, come si può facilmente verificare,

(3)
$$g_n^{(j)}(x) = (-1)^j g_n^{(j)}(\pi - x) \quad (j, n \in \mathbb{N})$$

Per la (1) possiamo scrivere

(4)
$$q^n g_n(x) = x^n (p - qx)^n \quad (n \in \mathbb{N})$$

Il polinomio $q^n g_n(x)$ è divisibile per x^n , quindi si può anche scrivere

(5)
$$q^n g_n(x) = \sum_{j=n}^{2n} c_j x^j \quad (c_j \in \mathbb{Z}, \ n \le j \le 2n)$$

In altre parole i coefficienti di x^j in $q^n g_n$ sono diversi da 0 solo se $j \ge n$ (essendo il polinomio multiplo di x^n) e se (anche) $j \le 2n$ (essendo il polinomio di grado 2n). Inoltre tali coefficienti c_j sono numeri interi in quanto derivano semplicemnte dallo sviluppo del binomio di Newton di $(p-qx)^n$ (e p,q sono naturali).

Vogliamo ora calcolare le derivate successive del polinomio $q^n g_n$ nel punto x = 0. Si vede subito che possono essere non nulle (nell'origine) solo le derivate di ordine k con $n \le k \le 2n$ (per le osservazioni precedenti, vedi la (5)), e più precisamente risulta

(6)
$$q^{n}g_{n}^{(k)}(0) = k!c_{k} \quad (n \in \mathbb{N}, \ n \le k \le 2n)$$

mentre tutte le altre derivate di $q^n g_n$, calcolate in 0, sono nulle.

Consideriamo ora le funzioni

(7)
$$f_n(x) := \frac{q^n g_n(x)}{n!} = \frac{x^n (p - qx)^n}{n!} \quad (n \in \mathbb{N})$$

Per le (6) le derivate successive di f_n nel punto 0 valgono

(8)
$$f_n^{(k)}(0) = \frac{k!c_k}{n!} \quad (n \in \mathbb{N}, \ n \le k \le 2n)$$

(le altre sono tutte nulle). È ora importante osservare che i secondi membri nella (8) sono tutti numeri interi, perché $c_k \in \mathbb{Z}$ come si è visto, e anche $k!/n! \in \mathbb{N}$ essendo $k \geq n$. Dalla (3) segue pure che sono intere (eventualmente negative) le derivate di f_n nel punto π :

(9)
$$f_n^{(k)}(\pi) = (-1)^k \frac{k! c_k}{n!} \quad (n \in \mathbb{N}, \ n \le k \le 2n)$$

Consideriamo certi integrali definiti associati alle funzioni f_n . Intanto risulta banalmente

(10)
$$0 < f_n(x)\sin x < \frac{(q\pi^2)^n}{n!} \quad \forall n \in \mathbb{N}, \ x \in (0,\pi)$$

da cui

(11)
$$0 < \int_0^{\pi} f_n(x) \sin x \, dx < \frac{\pi (q\pi^2)^n}{n!} \quad \forall n \in \mathbb{N}$$

e anche

$$\lim_{n} \int_{0}^{\pi} f_n(x) \sin x \, dx = 0$$

Passiamo ora a considerare le funzioni

(13)
$$F_n(x) := f_n(x) - f_n''(x) + \dots + (-1)^n f^{(2n)}(x)$$

Come si vede, $F_n(x)$ è una combinazione lineare di derivate successive di f_n , dove compaiono solo le derivate di ordine pari e con i segni alternati. Se deriviamo altre due volte, abbiamo

(14)
$$F_n''(x) = f_n''(x) - f_n^{(4)}(x) + \dots + (-1)^{n+1} f^{(2n)}(x)$$

nella quale si è anche tenuto conto del fatto che $f_n^{(2n+2)}(x) = 0$. Sommando le (13), (14) otteniamo

(15)
$$F_n(x) + F_n''(x) = f_n(x) \quad \forall n \in \mathbb{N}$$

e poi

(16)
$$\{F'_n(x)\sin x - F_n(x)\cos x\}' = \{F''_n(x) + F_n(x)\}\sin x = f_n(x)\sin x \ \forall n \in \mathbb{N}$$

e ancora

(17)
$$\int_0^{\pi} f_n(x) \sin x \, dx = \int_0^{\pi} \{F'_n(x) \sin x - F_n(x) \cos x\}' dx =$$
$$= \left[F'_n(x) \sin x - F_n(x) \cos x\right]_0^{\pi} = F_n(\pi) + F_n(0) \quad \forall n \in \mathbb{N}$$

Per la definizione di F_n (vedi la (13)) e per le (8), (9), sia $F_n(0)$ sia $F_n(\pi)$ sono numeri interi, quindi per le (11), (17) l'integrale $\int_0^{\pi} f_n(x) \sin x \, dx$ è un numero intero positivo, dunque maggiore o uguale ad 1. Tenendo conto della (12) abbiamo finalmente ottenuto una contraddizione. \square