Al variare del parametro reale α siano date le funzioni f_{α} definite da

$$f_{\alpha}(x) = x - \alpha + xe^{\alpha x^2}$$

Rispondere a tutte le domande al variare del parametro α :

- a) determinare l'insieme di definizione di f_{α} ;
- b) determinare gli eventuali limiti agli estremi di esso;
- c) determinare gli eventuali punti di massimo o minimo relativo e assoluto;
- d) determinare l'eventuale esistenza, numero e segno degli zeri di f_{α} .

Svolgimento. a) La funzione data è formata con operazioni di somma, prodotto e composizione di polinomi ed esponenziale: tali funzioni sono tutte definite in \mathbb{R} e quindi anche f_{α} è definita in \mathbb{R} , o, ciò che è lo stesso, in $(-\infty, +\infty)$. Ciò vale per ogni valore di $\alpha \in \mathbb{R}$.

b) La funzione data può anche essere scritta

$$f_{\alpha}(x) = -\alpha + x(e^{\alpha x^2} + 1)$$

La funzione esponenziale presente nella parentesi tonda ha limiti uguali a 0, a 1, o a $+\infty$ (per $x \to +\infty$ o $-\infty$) a seconda che sia $\alpha < 0$, $\alpha = 0$, $\alpha > 0$. Il fattore x invece ha per limite $+\infty$ per $x \to +\infty$, e $-\infty$ per $x \to -\infty$. Da questi fatti e da noti teoremi sui limiti si deduce immediatemente che

$$\lim_{x \to +\infty} f_{\alpha}(x) = +\infty, \qquad \lim_{x \to -\infty} f_{\alpha}(x) = -\infty$$

Anche questo risultato vale per ogni valore di $\alpha \in \mathbb{R}$.

c) Come è noto, la crescenza e la decrescenza di una funzione derivabile in un intervallo sono in relazione con il segno della derivata della funzione stessa. Le funzioni che entrano nella definizione di f_{α} sono tutte di classe $C^{\infty}(\mathbb{R})$ e quindi anche $f_{\alpha} \in C^{\infty}(\mathbb{R})$ per ogni valore reale di α ; occorre quindi studiare il segno della derivata di f_{α} . Si ha

$$f'_{\alpha}(x) = 1 + (1 + 2\alpha x^2)e^{\alpha x^2}$$

Di qui si vede immediatamente che tale derivata è positiva in \mathbb{R} se $\alpha \geq 0$, mentre non è chiaro che segno abbia se $\alpha < 0$. Supponiamo pertanto, d'ora in avanti, $\alpha < 0$.

Possiamo, in tale caso, fare intanto qualche osservazione. La funzione f'_{α} è pari, quindi possiamo in un primo momento studiare il suo segno solo per $x \geq 0$, da cui potremo poi dedurre facilmente il segno anche per le x < 0. Osserviamo anche che $f'_{\alpha}(0) = 2 > 0$, quindi per il teorema della permanenza del segno tale derivata sarà positiva anche in un intorno di 0. Osserviamo anche che $\lim_{x\to+\infty} f'_{\alpha}(x) = 1$; si pone quindi il problema di capire se $f'_{\alpha}(x) > 0$ per ogni $x \in [0, +\infty)$ o se tale derivata si annulla o cambia segno in qualche punto di tale intervallo.

Consideriamo a tale scopo

$$f_{\alpha}''(x) = 2\alpha x(3 + 2\alpha x^2)e^{\alpha x^2}$$

Di qui segue che $f''_{\alpha}(x) < 0$ se $x \in [0, \sqrt{-3/(2\alpha)})$, mentre $f''_{\alpha}(x) > 0$ se $x \in (\sqrt{-3/(2\alpha)}, +\infty)$. Allora per noti teoremi f'_{α} è (strettamente) decrescente in $[0, \sqrt{-3/(2\alpha)})$ mentre è (strettamente) crescente

in $(\sqrt{-3/(2\alpha)}, +\infty)$. Il punto $\sqrt{-3/(2\alpha)}$ è quindi un punto di minimo relativo (anzi, assoluto) per f'_{α} in $[0, +\infty)$; se calcoliamo il valore di f'_{α} in tale punto abbiamo un'informazione sul segno di f'_{α} in tale intervallo. Un facile calcolo mostra che si ha

$$f'_{\alpha}(\sqrt{-3/(2\alpha)}) = 1 - 2/\sqrt{e^3}$$

Come è noto, risulta e > 2, da cui seguono tutte le seguenti disuguaglianze:

$$e^3 > 8$$
, $\sqrt{e^3} > 2\sqrt{2}$, $1/\sqrt{e^3} < 1/(2\sqrt{2})$, $1 - 2/\sqrt{e^3} > 1 - 1/\sqrt{2} > 0$

Ciò prova che $f'_{\alpha}(\sqrt{-3/(2\alpha)}) > 0$, da cui segue che la derivata f'_{α} è positiva in tutto l'intervallo $[0, +\infty)$. Si è anche osservato che la f'_{α} è una funzione pari (cioè $f'_{\alpha}(x) = f'_{\alpha}(-x) \ \forall x \in \mathbb{R}$), quindi in realtà è $f'_{\alpha}(x) > 0 \ \forall x \in \mathbb{R}$. Per noti teoremi si conclude che la funzione f_{α} è strettamente crescente in \mathbb{R} per ogni $\alpha \in \mathbb{R}$, quindi per nessun valore reale di α esistono punti di massimo o minimo relativo o assoluto per f_{α} .

d) Si è già osservato che la funzione f_{α} è definita e continua in \mathbb{R} per ogni valore reale di α , e che inoltre i limiti di f_{α} per $x \to +\infty$ o per $x \to -\infty$ hanno segno discorde. Per noti teoremi possiamo intanto affermare che f_{α} ha almeno uno zero in \mathbb{R} per ogni valore reale di α . Al punto precedente si è provato che f_{α} è strettamente crescente in \mathbb{R} , quindi tale zero è unico. Anche questo è vero per ogni valore reale di α .

Resta infine da valutare il segno di tale zero, che possiamo indicare con x_{α} : esso è dunque l'unico punto reale tale che $f_{\alpha}(x_{\alpha}) = 0$. Da questa uguaglianza segue subito

$$\alpha = x_{\alpha}(1 + e^{\alpha x_{\alpha}^2})$$

In questa uguaglianza, il contenuto della parentesi tonda è sempre positivo, da cui segue che il segno di x_{α} è lo stesso del segno di α . Si conclude che x_{α} è positivo se α è positivo, x_{α} è negativo se α è negativo, x_{α} è zero se α è zero. \square