A Maximum Principle for Mixed Boundary Value Problems for Elliptic Equations in Non-Divergence Form.

Maurizio Chicco (*)

Sunto. – Si prova un principio di massimo per soluzioni di problemi al contorno misti, per equazioni differenziali lineari ellittiche del secondo ordine in forma non variazionale e a coefficienti discontinui.

1. - Introduction.

We consider a linear second order uniformly elliptic partial differential equation in non-divergence form:

(1)
$$Lu := -\sum_{i,j=1}^{n} a_{ij} \frac{\partial^{2} u}{\partial x_{i} \partial x_{j}} + \sum_{i=1}^{n} b_{i} \frac{\partial u}{\partial x_{i}} + cu = f$$

in an open bounded subset Ω of \mathbb{R}^n . Recall the Alexandrov-Bakel'-man-Pucci maximum principle for the Dirichlet problem: if $u \in H^{2,n}(\Omega)$ is such that $Lu \leq f$ a.e. in Ω with $u \leq 0$ on $\partial \Omega$ and $c \geq 0$, then

(2)
$$u \leq K ||f||_{L^n(\Omega)}$$
 a.e. in Ω

where K is a constant depending on n, Ω and the coefficients of L (for an estimate of the constant K see e.g. [1]). This result for the Dirichlet problem has been extended later by Lions, Trudinger and Ur-

(*) I am pleased to thank Prof. Ugo Bruzzo who suggested a better wording of Lemma 1, Prof. Paolo Manselli for his bibliographic help, Dr. Laura Servidei for correcting English style, Prof. Giorgio Talenti for his useful remarks. A particular thank to the referee for his several valuable improvements.

bas [4] and Lieberman [3] to the third boundary value problem

$$\begin{cases} Lu = f & \text{a.e. in } \Omega, \\ Mu := \sum_{i=1}^{n} \beta_i \frac{\partial u}{\partial x_i} + \gamma u = 0 & \text{on } \partial \Omega, \end{cases}$$

or, more generally, to the mixed problem

$$\begin{cases} Lu = f & \text{in } \Omega, \\ Mu = 0 & \text{on } \Gamma_1 \subset \partial \Omega, \\ u = 0 & \text{on } \partial \Omega \backslash \Gamma_1 \end{cases}$$

(for this terminology, see e.g. [5]).

More precisely, in [3] and [4] the authors assume

$$(3) Mu \leq 0$$

on a subset Γ_1 of $\partial \Omega$ and

$$(4) u \leq 0$$

on $\Gamma_0 := \partial \Omega \setminus \Gamma_1$. In [4] the set Ω is assumed convex, while in [3] the function γ is assumed strictly positive (thus excluding e.g. the Neumann problem $\partial u / \partial N = 0$ on Γ_1).

The aim of the present note is to prove an inequality similar to (2) under the boundary conditions (3), (4) and $\gamma \ge 0$ on Γ_1 . The proof is independent on those of [3] and [4], although some more regularity on β , Γ_1 and b_i is assumed.

2. - Notations and hypotheses.

Let Ω be an open bounded subset of \mathbb{R}^n ; Γ_0 , Γ_1 subsets of $\partial\Omega$, Γ_0 closed, $\Gamma_1 = \partial\Omega \setminus \Gamma_0$, $\overline{\Gamma}_1$ locally of class C^2 . Let β be a vector valued function of class C^2 in a neighborhood of $\overline{\Gamma}_1$, such that $|\beta| \equiv 1$ and $\beta \cdot N > 0$ on $\overline{\Gamma}_1$ (where N denotes the outer normal to $\partial\Omega$). Let γ be a non-negative function defined on Γ_1 . The coefficients of L (a_{ij}, b_i, c) are supposed to belong to $L^{\infty}(\Omega)$, and there exist two positive constants m_0, c_0 such that

(5)
$$\sum_{i,j=1}^{n} a_{ij} t_i t_j \ge m_0 |t|^2, \forall t \in \mathbb{R}^n \text{ a.e. in } \Omega, \quad c \ge c_0 \text{ a.e. in } \Omega.$$

If $u \in H^{2,n}(\Omega)$ we shall say that

$$Mu := \sum_{i=1}^{n} \beta_i \frac{\partial u}{\partial x_i} + \gamma u \le 0 \text{ on } \Gamma_1, \quad u \le 0 \text{ on } \Gamma_0$$

in the sense of $H^{2,n}(\Omega)$ if there exists a sequence $\{u_k\} \in C^2(\overline{\Omega})$ such that $Mu_k \leq 0$ on $\Gamma_1, u_k \leq 0$ on $\Gamma_0 \forall k$ and $\lim_k u_k = u$ in $H^{2,n}(\Omega)$ (see e.g. Stampacchia [7]).

3. - Lemmata.

LEMMA 1. – Let $x_0 \in \overline{\Gamma_1}$. Then there exist a positive number r and a function α , defined in a neighborhood of x_0 , such that:

 $\alpha \in C^2$, $\alpha(x) \equiv 1$ if $|x - x_0| \le r$, $0 \le \alpha(x) \le 1$ $\forall x$, $\alpha(x) \equiv 0$ if $|x - x_0| \ge 2r$,

 $|\nabla \alpha| \leq K_1/r$ (where K_1 is a constant depending on n, β , Γ_1), $\partial \alpha/\partial \beta \equiv 0$ on Γ_1 .

Furthermore, the number r can be chosen independent on x_0 .

PROOF. – Consider, to begin with, $x_0 \in \overline{\Gamma_1}$ fixed. In a neighborhood of x_0 we may take local coordinates $(\xi_1, \xi_2, ..., \xi_n)$, where $(\xi_1, \xi_2, ..., \xi_{n-1})$ are coordinates on Γ_1 around x_0 , and ξ_n is such that $\beta = \partial/\partial \xi_n$. We may assume that $\xi_n = 0$ on Γ_1 , $(\xi_1, \xi_2, ..., \xi_{n-1})$ run over a subset U of \mathbb{R}^{n-1} , and that ξ_n takes values in $(-\delta, \delta)$. We denote by ϕ the change of coordinates that expresses the standard coordinates in \mathbb{R}^n around x_0 as functions of the ξ 's. Furthermore, the neighborhood U and the number δ may be chosen in such a way that ϕ is invertible.

Now, let $0 < \varrho_1 < \varrho_2$ and θ be a function of class C^2 such that $\theta(t) \equiv 1$ when $0 \le t \le \varrho_1$, $0 \le \theta(t) \le 1$ when $\varrho_1 \le t \le \varrho_2$, $\theta(t) \equiv 0$ when $t \ge \varrho_2$, $-2/(\varrho_2 - \varrho_1) \le \theta'(t) \le 0$ $\forall t$. Define also the function $\tilde{\alpha}: \mathbb{R}^n \to \mathbb{R}$ by $\tilde{\alpha}(\xi) = \theta(|\xi|)$, $\xi \in \mathbb{R}^n$; clearly $\partial \tilde{\alpha} / \partial \xi_n = 0$ when $\xi_n = 0$.

We choose $\varrho_2 > 0$ so that the support of $\tilde{\alpha}$ is contained in $U \times [-\delta, \delta]$ and let α be defined by

(6)
$$\widetilde{\alpha}(\xi) := \alpha[\phi(\xi)], \quad \xi \in U \times [-\delta, \delta]$$

where ϕ is the change of variables introduced before. According to the previous choices and since ϕ is invertible, it turns out that $\alpha(x) \equiv 1$ in a neighborhood of x_0 and $\alpha(x) \equiv 0$ if $|x - x_0|$ is sufficiently large. Therefore by choosing suitably ϱ_1, ϱ_2, r it is possible to get, as requested, $\alpha(x) \equiv 1$ if $|x - x_0| \leq r$, $\alpha(x) \equiv 0$ if $|x - x_0| \geq 2r$,

 $|\nabla \alpha(x)| \leq K_2/r$, where K_2 is a constant depending only on ϕ , i. e. on β and Γ_1 .

Moreover, we have

$$\frac{\partial \alpha}{\partial \beta} = \frac{\partial \widetilde{\alpha}}{\partial \xi_n}$$

which vanishes on Γ_1 .

Take now x instead of x_0 and let it vary in $\overline{\Gamma}_1$. Call r(x) the supremum of the numbers r, corresponding to x, whose existence was proved before. It is easy to ascertain that the function $x \to r(x)$ is continuous on $\overline{\Gamma}_1$, therefore one can take $r := \min\{r(x): x \in \overline{\Gamma}_1\} > 0$, which does not depend on x.

REMARK. – The above introduced function θ is of class C^2 and $\theta(t) \equiv 1$ when $0 \le t \le \varrho_1$, therefore $\lim_{t \to \varrho_1} \theta'(t) = \lim_{t \to \varrho_1} \theta''(t) = 0$. Since θ is supposed to be decreasing, one can claim that for any $\varepsilon > 0$ there exists $t_{\varepsilon} \in (0,1)$ such that $|\theta'(t)| + |\theta''(t)| < \varepsilon$ if $\theta(t) > t_{\varepsilon}$. By the definition of the function α , a similar property is true for it also: for any $\varepsilon > 0$ there exists $t_{\varepsilon} \in (0,1)$ such that $|\nabla \alpha(x)| + |D^2 \alpha(x)| < \varepsilon$ whenever $\alpha(x) > t_{\varepsilon}$.

LEMMA 2. – Assumptions: let $u \in C^2(\Omega) \cap C^1(\overline{\Omega})$, $f \in L^n(\Omega)$, $Lu \leq f$ a.e. in Ω , $u \leq 0$ on Γ_0 , $Mu \leq 0$ on Γ_1 ; there exist a vector $\beta_0 \in \mathbb{R}^n$ with $|\beta_0| = 1$, and two numbers γ_0 , δ such that $\gamma_0 > 0$, $0 < \delta < 1$ and, when $x \in \Gamma_1$ with $\gamma(x) \leq \gamma_0$, it turns out $|\beta(x) - \beta_0| \leq \delta$.

Conclusion: there exists a constant K_3 , depending on n, m_0 , γ_0 , δ , $\sum \|b_i\|_{L^n(\Omega)}$, diam (Ω) such that

(7)
$$u(x) \leq K_3 \|f\|_{L^n(\Omega)}, \quad \forall x \in \Omega.$$

PROOF. – Replacing u with $\max(u,0)$ and Ω with $\{x \in \Omega : u(x) > 0\}$, we may assume $u \ge 0$ in Ω . After this change, the set Γ_0 may become bigger and Γ_1 smaller, but (as one can easily verify) the condition $Mu \le 0$ continues to hold in the new Γ_1 .

From the hypotheses there exists in $\overline{\Omega}$ at least a maximum point for u: we may suppose that it is the origin O of \mathbb{R}^n , i.e.

(8)
$$u(x) \le u(0) := \overline{m} \qquad \forall x \in \Omega.$$

Given a (fixed) $y \in \mathbb{R}^n$, let us consider the function g(x) := u(x) - xy, and let $\overline{x} \in \overline{\Omega}$ be such that $g(x) \leq g(\overline{x}) \forall x \in \overline{\Omega}$. Let us suppose, at first,

that $\bar{x} \in \Gamma_0$. Then

$$g(O) = \overline{m} \le u(\overline{x}) - \overline{x}y \le -\overline{x}y \le |y|d$$

where d is the diameter of Ω .

Now consider the case $\overline{x} \in \Gamma_1$ and $\gamma(\overline{x}) > \gamma_0$. Since $(\partial g / \partial \beta)(\overline{x}) \ge 0$ and $Mu(\overline{x}) \le 0$ by hypothesis, we get

$$\gamma_0 u(\overline{x}) \le \gamma(\overline{x}) u(\overline{x}) \le -\frac{\partial u}{\partial \beta}(\overline{x}) \le -\beta y \le |y|$$

whence

$$(10) \quad g(O) = \overline{m} \leq g(\overline{x}) = u(\overline{x}) - \overline{x}y \leq \frac{|y|}{\gamma_0} - \overline{x}y \leq \left(\frac{1}{\gamma_0} + d\right)|y|.$$

Finally, let us suppose $\overline{x} \in \Gamma_1$ with $0 \le \gamma(\overline{x}) \le \gamma_0$. Then by our hypotheses there exist $\beta_0 \in \mathbb{R}^n$ with $|\beta_0| = 1$ and δ with $0 < \delta < 1$ such that $|\beta(\overline{x}) - \beta_0| \le \delta$. Since we have

$$Mu(\overline{x}) = \frac{\partial u}{\partial \beta}(\overline{x}) + \gamma(\overline{x})u(\overline{x}) \leq 0,$$

$$\frac{\partial g}{\partial \beta}(\overline{x}) = \frac{\partial u}{\partial \beta}(\overline{x}) - \beta(\overline{x})y \ge 0,$$

we get $\beta(\overline{x})y \leq 0$, whence

$$\beta_0 y \leq \delta |y|.$$

Therefore if we choose $y \in \mathbb{R}^n$ such that neither (9) nor (10) nor (11) is satisfied, i.e.

(12)
$$|y| < \frac{\overline{m}\gamma_0}{1 + d\gamma_0}, \quad \beta_0 y > \delta |y|$$

the point \overline{x} will belong neither to Γ_0 nor to Γ_1 , hence is necessarily interior to Ω . In this case obviously $\nabla g(\overline{x}) = 0$ i.e. $\nabla u(\overline{x}) = y$; this means that the set

$$T = \left\{ y \in \mathbb{R}^n \colon \left| y \right| < \frac{\overline{m}\gamma_0}{1 + d\gamma_0}, \beta_0 y > \delta \left| y \right| \right\}$$

is contained in $\nabla u(\Gamma_u)$, which denotes the set of the values assumed in Ω by the vector function $x \to \nabla u(x)$ (see [6], [2]).

Therefore the result may be proved as in [2] Theorem 9.1, with the only difference that in Lemma 9.4 the integration will be extended to the above defined set T instead of the whole ball. So the proof is complete, with the constant K_3 obtained as in [2] but depending also on γ_0 and δ as explained.

THEOREM. – Assume the hypotheses listed in section 2. Suppose $u \in H^{2,n}(\Omega)$ such that $Mu \leq 0$ on Γ_1 , $u \leq 0$ on Γ_0 in the sense of $H^{2,n}(\Omega)$, $Lu \leq f$ a.e. in Ω . Then there exists a constant K_4 depending on the coefficients of L and β , γ , Γ_1 such that

(13)
$$u \leq K_4 \|f\|_{L^n(\Omega)} \quad in \ \Omega.$$

PROOF. – Since it is possible to approximate u in the norm of $H^{2,n}(\Omega)$ by a sequence u_k $(k \in \mathbb{N})$ of functions belonging to $C^2(\overline{\Omega})$ and satisfying the same boundary conditions of u, taking into account that $Lu_k \to f$ in $L_n(\Omega)$, we may assume without loss of generality $u \in C^2(\overline{\Omega})$.

From the compactness of $\overline{\Gamma}_1$, the continuity of β and lemmata 1 and 2, the following is true: there exists a positive number r such that for any $x_0 \in \overline{\Gamma}_1$ there exists both the function α as described by Lemma 1 (with support in $B(x_0, 2r)$) and the number β_0 of Lemma 2, as applied to $\Omega \cap B(x_0, 2r)$ instead of Ω . Also, it is clear that in lemma 2 the numbers $\gamma_0 > 0$ and $\delta \in (0,1)$ can be chosen arbitrarily (for example $\gamma_0 = 1$ and $\delta = 1/2$).

Let x_M be a point of $\overline{\Omega}$ such that $u(x_M) = \max\{u(x): x \in \overline{\Omega}\} := +\overline{m}$. Suppose first that $\operatorname{dist}(x_M, \overline{\Gamma_1}) < r$; then there exists at least a point $x_0 \in \overline{\Gamma_1}$ such that $x_M \in B(x_0, r)$. Because of previous considerations we may apply Lemma 1 to the ball $B(x_0, 2r)$. Let α the function described there and define the operator L' by

$$(14) L' := -\sum_{i,j=1}^{n} a_{ij} \frac{\partial^2}{\partial x_i \partial x_j} + \sum_{i=1}^{n} \left(b_i + \frac{2}{\alpha} \sum_{j=1}^{n} a_{ij} \frac{\partial \alpha}{\partial x_j} \right) \frac{\partial}{\partial x_i}.$$

By hypothesis, $u \leq 0$ on Γ_0 and $\partial u / \partial \beta + \gamma u \leq 0$ on Γ_1 . By the definition of α we have $\partial \alpha / \partial \beta = 0$ on Γ_1 , therefore

$$\frac{\partial (\alpha u)}{\partial \beta} + \gamma \alpha u = \alpha \left(\frac{\partial u}{\partial \beta} + \gamma u \right) \leq 0 \text{ on } \Gamma_1, \quad \alpha u \leq 0 \text{ on } \Gamma_0.$$

Let 0 < t < 1; consider the function $w := \max(\alpha u - t\overline{m}, 0)$ and observe

that w(x) = 0 at any point x where $\alpha(x) \le t$. Moreover in the set

$$\Omega_t := \{ x \in B(x_0, 2r) \cap \Omega \colon \alpha(x)u(x) > t\overline{m} \}$$

(which is not empty since it contains x_M) we have

(15)
$$L'w = L'(\alpha u) =$$

$$=\alpha Lu+\left(-\sum_{i,j=1}^n a_{ij}\,\frac{\partial^2\,\alpha}{\partial x_i\,\partial x_j}+\sum_{i=1}^n b_i\,\frac{\partial\alpha}{\partial x_i}\,+\,\frac{2}{\alpha}\,\sum_{i,j=1}^n a_{ij}\,\frac{\partial\alpha}{\partial x_i}\,\frac{\partial\alpha}{\partial x_j}\,-c\alpha\right)\!u\,.$$

An easy inspection shows that the function $w = \max(\alpha u - t\overline{m}, 0)$ satisfies the same boundary conditions as u even on the new Γ_1 and Γ_0 (after replacing Ω with Ω_t).

We need now to get rid of the last term in (15), and to this end we adjust the parameter t. By the remark after Lemma 1, we can choose t < 1 such that

$$(16) \quad -\sum_{i,j=1}^{n} a_{ij} \frac{\partial^{2} \alpha}{\partial x_{i} \partial x_{j}} + \sum_{i=1}^{n} b_{i} \frac{\partial \alpha}{\partial x_{i}} + \frac{2}{\alpha} \sum_{i,j=1}^{n} a_{ij} \frac{\partial \alpha}{\partial x_{i}} \frac{\partial \alpha}{\partial x_{j}} - c\alpha \leq 0$$

if $\alpha(x) > t$ (in fact we have supposed $c \ge c_0$, c_0 a positive constant, and $b_i \in L^{\infty}$). From (15), (16) we deduce $L'w \le \alpha Lu \le \alpha f$ a. e. in Ω_t and by applying Lemma 2 we get

(17)
$$w \leq \widetilde{K}K \|f\|_{L^{n}(\Omega)} \quad \text{in } \Omega_{t}$$

whence, by the definition of w

(18)
$$\overline{m} \leq \frac{\widetilde{K}}{1-t} ||f||_{L^{n}(\Omega)}.$$

The constant \widetilde{K} depends on the coefficients of L, on α (and therefore on Γ_1) and on β ; the number t depends on α , c_0 and $\sum \|b_i\|_{L^{\infty}}$.

We still have to consider the case $\operatorname{dist}(x_M, \Gamma_1) \geq r$. In this case (without applying the preceding lemmata), let α be a function such that: $\alpha \in C_0^2(\mathbb{R}^n)$, $\alpha(x) = 0$ if $|x - x_M| \geq r$, $\alpha(x) = 1$ in a neighborhood of x_M , $0 \leq \alpha(x) \leq 1$, $|\nabla \alpha(x)| \leq 2/r$. Since clearly the function αu satisfies the Dirichlet condition $\alpha u \leq 0$ on $\partial \Omega$, we may repeat the preceding procedure from (15) to (18) by applying, instead of Lemma 2, the inequality of Alexandrov-Bakel'man-Pucci (see e.g. [2] Theorem 9.1). In this way we get an inequality like (18) and we conclude as before.

REFERENCES

- [1] X. Cabre, On the Alexandroff-Bakel'man-Pucci estimate and the reversed Hölder inequality for solutions of elliptic and parabolic equations, Comm. Pure Appl. Math., 48 1995, 539-570.
- [2] D. GILBARG N. S. TRUDINGER, Elliptic partial differential equations of second order, 2nd ed., Springer-Verlag, Berlin-Heidelberg-New York-Tokyo, 1983.
- [3] G. M. LIEBERMAN, Local estimates for subsolutions and supersolutions of oblique derivative problems for general second order elliptic equations, Trans. Amer. Math. Soc., 304 (1987), 343-353.
- [4] P. L. LIONS N. S. TRUDINGER J. I. E. URBAS, The Neumann problem for equations of Monge-Ampère type, Comm. Pure Appl. Math., 39 (1986), 539-563
- [5] C. MIRANDA, Partial differential equations of elliptic type, 2nd ed., Springer-Verlag, Berlin-Heidelberg-New York, 1970.
- [6] C. Pucci, Limitazioni per soluzioni di equazioni ellittiche, Ann. Mat. Pura Appl. (4), 74 (1966), 15-30.
- [7] G. Stampacchia, Équations elliptiques du seconde ordre à coefficients discontinus, Université de Montreal, 1966.

Istituto Matematico di Ingegneria Università di Genova, P.le Kennedy, Pad. D - 16129 Genova e-mail address: chicco@dima.unige.it

Pervenuta in Redazione

il 20 aprile 1995 e, in forma rivista, il 10 gennaio 1997