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A Maximum Principle
for Mixed Boundary Value Problems
for Elliptic Equations in Non-Divergence Form.

Maurizio CHIcCCO (¥)

Sunto. — Si prova un principio di massimo per soluzioni di problemi al con-
torno misti, per equazioni differenziali lineari ellittiche del secondo ordi-
ne in forma mon variazionale e a coefficienti discontinui

1. — Introduction.

We consider a linear second order uniformly elliptic partial dif-
ferential equation in non-divergence form:

e w_Fu S ou -
(1) Lu:= L’Z:lau —az,fa:cj +i§1b, E +ecu=f

in an open bounded subset 2 of R". Recall the Alexandrov-Bakel-
man-Pucci maximum principle for the Dirichlet problem: if e
H%" () is such that Lu<f ae. in £ with <0 on 32 and ¢=0,
then

2) u<K|fllona ae. in Q

where K is a constant depending on n, £2 and the coefficients of L (for
an estimate of the constant K see e.g.[1]). This result for the Dirich-
let problem has been extended later by Lions, Trudinger and Ur-

(*) I am pleased to thank Prof. Ugo Bruzzo who suggested a better wor-
ding of Lemma 1, Prof. Paolo Manselli for his bibliographic help, Dr. Laura
Servidei for correcting English style, Prof. Giorgio Talenti for his useful
remarks. A particular thank to the referee for his several valuable im-
provements.
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bas [4] and Lieberman [3] to the third boundary value problem
Lu=f ae. in 2,
_ Vg Ou _
Mu:= 2 B; == +yu=0 on 3R,
i=1 ' ox;

or, more generally, to the mixed problem

Lu=f in £,
Mu=0 on I';coQ,
u=0 on 0Q\I',

(for this terminology, see e.g. [5]).
More precisely, in [3] and [4] the authors assume

3) Mu<0
on a subset I'; of 32 and
(4) u<0

on Iy :=3Q\I';. In [4] the set £'is assumed convex, while in [3] the
function y is assumed strictly positive (thus excluding e.g. the Neu-
mann problem du /N =0 on I'y).

The aim of the present note is to prove an inequality similar to (2)
under the boundary conditions (3), (4) and y =0 on I'y. The proof is
independent on those of [3] and [4], although some more regularity
on 8, I'y and b; is assumed.

2. — Notations and hypotheses.

Let Q2 be an open bounded subset of R™; I'y, I'; subsets of 022, I'y
closed, I'; = 3Q\I'y, T'; locally of class C?. Let § be a vector valued
function of class C2 in a neighborhood of Ty, such that || =1 and
B-N >0 on I'; (where N denotes the outer normal to 6%2). Let y be a
non-negative function defined on I';. The coefficients of L (ay,b;,c)
are supposed to belong to L “(£2), and there exist two positive con-
stants my,cp such that

G) X aytit;=mg|t|% VieR" ae. in 2, c=c¢ ae in Q.
ij=1
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If we H>"(R) we shall say that

ou
axz-

Mu:= 2 B; +yu<0on Iy, u<0 on I,

i=1
in the sense of H>"(R) if there exists a sequence {u;} cC*(2) such
that Mu, <0 on I'y, u;, <0 on I'yVk and lilrcnu,c =u in H>"(2) (see e.g.
Stampacchia [7]).

3. — Lemmata.

LEMMA 1. — Let xg e I'. Then there exist a positive number r and a
function a, defined in a meighborhood of x,, such that:

aeC? a@)=1 if |x—x| <7, 0sa(@)<1 Vz, a(x)=0 if
| — xy | =2,

|Va| <K, /r (where K, is a constant depending on n, B, I'y),
da/3B8=0 on I'y.

Furthermore, the number r can be chosen independent on x,.

PROOF. — Consider, to begin with, 2, e I'; fixed. In a neighborhood
of &y we may take local coordinates (&,&.,...,5,), where
(&4,&5,...,&E,_1) are coordinates on I'; around «x,, and &, is such that
p=3/0&,. We may assume that £,=0on I'y, (§,&5,...,&,-1) Tun
over a subset U of R* !, and that &, takes values in (—3,d). We de-
note by ¢ the change of coordinates that expresses the standard co-
ordinates in R" around #, as functions of the &’s. Furthermore, the
neighborhood U and the number é may be chosen in such a way that
¢ is invertible.

Now, let 0<p, <@, and 6 be a function of class C? such that
0(t) =1 when 0<{<p,, 0<6(t) <1 when o, <t <g,, 6(t) =0 when
t=03,—2/(0z2—0,)<6'(t)<0 Vt. Define also the function
a:R"—>R by a(§) =6(|&|), EeR"; clearly da /d&, =0 when &,=0.

We choose 0, >0 so that the support of @ is contained in
UX[-0,0] and let a be defined by

(6) a(§)=alp(8)], &EeUXx[-06,0]

where ¢ is the change of variables introduced before. According to
the previous choices and since ¢ is invertible, it turns out that
a(z) =1 in a neighborhood of x; and a(x) =0 if |2 — x| is sufficient-
ly large. Therefore by choosing suitably ¢4, @3, 7 it is possible to get,
as requested, a(x)=1 if |x—2y| <7, a(®)=0 if |x—x| =27,
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|Va(x)| < K, /7, where K, is a constant depending only on ¢, i.e. on
p and I';.
Moreover, we have

a _ da
B 9k,

which vanishes on I';.

Take now « instead of «, and let it vary in I';. Call «(x) the supre-
mum of the numbers r, corresponding to x, whose existence was
proved before. It is easy to ascertain that the function x—r(x) is
continuous on T, therefore one can take »:=min{r(x): xe I} >0,
which does not depend on z. L

REMARK. — The above introduced function 6 is of class C? and
0(t) =1 when 0<t<p,, therefore tlim @' (t) = lim 8" (t) =0. Since 6

—01 t—01
is supposed to be decreasing, one can claim that for any £ >0 there

exists ¢, € (0,1) such that |6’ (t)| + |6"(¢)| < e if 6(¢) > t,. By the def-
inition of the function a, a similar property is true for it also: for any
¢ >0 there exists t.e(0,1) such that |Va(x)| + |D®a(z)| <& when-
ever a(x) >t,.

LEMMA 2. - Assumptions: let ueC*(Q)NCY(Q), feL™(2),
Lu<fae in , us0 on 'y, Mu<0 on I'y; there exist a vector
BoeR™ with |Bo| =1, and two numbers y,, 6 such that y,>0,
0< 0 <1 and, when xel'; with y(x)<y,, it turns out |f(x) —fq | <o.

Conclusion: there exists a constant Ks, depending on n, my, ¥ o,
8, 2 |Ibi Ly, diam (2) such that

(7) u(m) < K3 "f”L”(.Q) 4 Vx € Q .

PROOF. - Replacing % with max(%,0) and 2 with {xeQ:
w(z) >0}, we may assume % =0 in Q. After this change, the set I'y
may become bigger and I'; smaller, but (as one can easily verify)
the condition Mu <0 continues to hold in the new I';.

From the hypotheses there exists in 2 at least a maximum point
for u: we may suppose that it is the origin O of R", i.e.

® w(x) <u(0):=m Vxe Q.

Given a (fixed) yeR", let us consider the function g(x) '=u(x) — xy,
and let T e 2 be such that g(x) < g(x) Vx e Q. Let us suppose, at first,
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that xely. Then
©)] g(0)=m<u®) —Ty< —zy<|yld

where d is the diameter of €.
Now consider the case TeI'; and ¥(Z) > y,. Since (3¢ /3B)(x) =0
and Mu(z) <0 by hypothesis, we get

7ou(®) < p(@(®) < — 350:) < -By< |yl

whence

< g(F) = lyl _ L
(10) g(0)=m<g@) =u(@) -2y < =~ Ty <\ 5, +d)|y| -
Finally, let us suppose Zel'; with 0<y(%) <y,. Then by our hy-

potheses there exist e R" with |8, | =1 and 6 with 0< 6 <1 such
that |B(x) — B | <O. Since we have

Mu(x) = aﬁ U (z) + y(x)u(x) <0,
ﬁ (:c) ﬁ (96) pBxyy =0,
we get B(x)y <0, whence
(11) Boy<dlyl.

Therefore if we choose % € R™ such that neither (9) nor (10) nor (11) is
satisfied, i.e.

myo
2
(1 ) Iyl 5 1+d)/0’ ﬁ0y>6|y|

the point Z will belong neither to I'y nor to I';, hence is necessarily
interior to €. In this case obviously Vg(Z) =0 ie. Vu(x)=y; this
means that the set

T=[yeR"=|y| 1+d Boy > 6|y|]

is contained in Vu(I",), which denotes the set of the values assumed
in 2 by the vector function x— Vu(x) (see [6], [2]).

Therefore the result may be proved as in [2] Theorem 9.1, with
the only difference that in Lemma 9.4 the integration will be extend-
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ed to the above defined set T instead of the whole ball. So the proof
is complete, with the constant Kj obtained as in [2] but depending
also on y, and 0 as explained. i

THEOREM. — Assume the hypotheses listed in section 2. Suppose
ue H>"(Q) such that Mu<0 on I'y, wu<0 on Iy in the sense of
H?"(Q), Lu <f a.e. in Q. Then there exists a constant K, depending
on the coefficients of L and 8, y, I'y such that

(13) U< K4 ”f”L’n(Q) m Q.

PROOF. — Since it is possible to approximate « in the norm of
H>"(2) by a sequence u (ke N) of functions belonging to C*(2) and
satisfying the same boundary conditions of u, taking into account
that Lu,—f in L,(2), we may assume without loss of generality
ueC?(Q).

From the compactness of I';, the continuity of 8 and lemmata 1
and 2, the following is true: there exists a positive number r such
that for any x,eI'; there exists both the function a as described by
Lemma 1 (with support in B(x,,27)) and the number 3, of Lemma 2,
as applied to Q N B(x,,2r) instead of 2. Also, it is clear that in lem-
ma 2 the numbers y,>0 and d€(0,1) can be chosen arbitrarily (for
example yo=1 and 6=1/2).

Let x,; be a point of 2 such that u(xy) = max {u(x): xe Q} = +m.
Suppose first that dist(x,,, ;) <7; then there exists at least a point
%o e I'; such that xy € B(x,,7). Because of previous considerations we
may apply Lemma 1 to the ball B(x,,27). Let a the function de-
scribed there and define the operator L' by

Tl I - o d
(4 L's= LEI% 52,55, +Z(b + = Za,w )ax1

By hypothesis, u <0 on I'y and du /3B + yu <0 on I';. By the defini-
tion of a we have da /36=0 on I';, therefore

Aau)
op

+yau=a( 26 +yu)s0 on Iy, au<0onl/l.

Let 0 <t < 1; consider the function w := max (au — tm,0) and observe
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that w(x) =0 at any point x where a(x) <t. Moreover in the set
Q, = {xeB(xy,2r) N 2: a(x)u(x) >tm}

(which is not empty since it contains x,;,) we have

(15) L'w=L'(au)=

_ S g o Sy Pa 2§ Oada
—aLu+( i,y‘gl% ox; Ox; +i§1b’ o; ai,j%la” ox; dux; ca)u.

An easy inspection shows that the function w = max (au — tm,0) sat-
isfies the same boundary conditions as « even on the new I'; and I'y
(after replacing 2 with ).

We need now to get rid of the last term in (15), and to this end we
adjust the parameter ¢. By the remark after Lemma 1, we can choose
t<1 such that

(16) — f‘, a; Fa +i§:',1bi

da . 2 < da da
ij=1 amiaxj X; s 2 s

8y = = = o<l
dx; @A ij=1 Y Ox; Ox;

if a(x) >t (in fact we have supposed ¢ = ¢, ¢, a positive constant, and
b;e L ). From (15), (16) we deduce L' w < aLu < af a.e. in 2, and by
applying Lemma 2 we get

1) w< KK|flling in 2,

whence, by the definition of w

‘N

(18) ms £ lln o) -

1=t
The constant X depends on the coefficients of L, on a (and therefore
on I';) and on B; the number ¢ depends on a, ¢, and >, ||b; ||, =.
We still have to consider the case dist (y,7";) =7. In this case
(without applying the preceding lemmata), let a be a function such
that: ae C¥(R™),a(x) =0 if |2 — 2y | =7, a(x) =1 in a neighborhood
of &y, 0 <a(x) <1, |Va(x)| <2 /r. Since clearly the function au sat-
isfies the Dirichlet condition au <0 on 92, we may repeat the pre-
ceding procedure from (15) to (18) by applying, instead of Lemma 2,
the inequality of Alexandrov-Bakel’'man-Pucci (see e.g.[2] Theorem
9.1). In this way we get an inequality like (18) and we conclude as
before. &
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