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Solvability of the Dirichlet Problem in H??(Q)
for a Class of Linear Second Order Elliptic
Partial Differential Equations.

Mavrizio Crarcco (Genova) (*)

Summary. — I study the Dirichlet problem Lu = f in Q, e H**(2) Hy"(R2)
with given feL,(Q), 1<p<-+oo. Here I is a linear second order
uniformly elliptic partiol differential operator, where the coefficients of
the second derivatives are (wniformly) continuous in 2, while the other
ones belong to switable L, (82) classes.

1. —~ Introduction.

We congider the elliptic operator

n 82 n a
1) L= _i,iz?ﬂaij ow, 0, + ;‘:,lbi é@: +¢

where the coefficients @, are uniformly continuous in the open
set © and the other ones belong to suitable L) spaces. Many
authors (see for example [8], [9], [11]) have studied the inequality

(2) ] g2y <Ko { | Lt g0 + [y} 5

with 1< p<--oco, valid for any function # which vanishes on the
boundary of £ and possesses generalized second derivatives in
L,(2). The constant K, depends on p, n, {2 and the coefficients of L.
The aim of the present work is to study, starting from (2), the
solvability of the following Dirichlet problem: given any fe L, (£2)
(with 1< p<-+oo), to establish existence and uniqueness of a

(*) This work was written while the author was a member of the
« Centro di Matematica e Fisica Teorica del C.N.R.» at the University
of Genova, directed by prof. J. CECCONI.
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function # such that

(3) ,
we H2v(Q), =0 on 082.

{ L = f a.e, in £,
The principal result claims that if the essential infimum of ¢ in £
is positive, the problem (3) has one and only one solution (see the-
orem 2).

The particular case p =2 was the subject of my earlier
work [4]. T wish to thank G. TALENTI, to whom I owe the sug-
gestion of extending those results to the general case 1 << p <+ oo.

2. — Notations and hypotheses.

Let 2 be an open bounded set in R*, with n>2.

We suppose that the boundary of £ (denoted by 0£) can be
represented locally by a function with continuous second deriva-
tives. Let us put, for shortness:

[ |in<9> = E %0, 12,0215 %0 2,000 = > %2, a, |le<9) .
=1 2,j=1
We denote by H(£), HY"(Q) the Banach spaces obtained by
completing Q) and C3(£2) respectively according to the norm

Il rey = %)z, -+ %0l 20 -

Let H>?(Q) denote the space obtained by completing C*(2) ac-
cording to the norm

(4) Tl vy = Mz + [%elz@ + [aslsy -

We observe that in H»?(0) N HY?({2) the norm (4) is equivalent
50 %], ¢ see [7]. This fact will be often used throughout the
present work without mention.

Let L be the operator defined in (1); we suppose that a; = a,;,

4, € OD), bieL (), ceL(Q), (,ji=1,2, ..,n)

where r=nforl<p<m,r>nforp=mn,r=pforp>n;s=n/2
for 1< p<n/2, s>n/2 for p=n/2, s=1p for p>n/2. There exi

-sts a positive constant » such that > a;t:¢,> [t|2 in Q.
£,§=1
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3. — Preliminary lemmas.

We set
‘( ~ noo 82 no. a -
(5) L:—Z_Zl “z;m-I— glbia*m*["f—(f

where @,;, by, (i,§=1,2, ..., %), ¢ C*J) and

n

(6) D Aytid; >t in 2,
f.5e1
% | 0a,,
RANLLY R o
(7) m%xi.gz%l o, 29
®) m%x(g B:] + |5|) ~K,.
ge=l,
Lemma 1. — There ewists a positive constant A,, depending on

v, Ky, K4, p, n, such that
]l 2,00 < (A — A)? []i}u + Au ”L,,(Q)

for any we H**(Q) N H(2) and any 4> A,.

ProOF. — We begin with supposing p>2; the remaining case
1<p<?2 will be discussed later (see page 12). TFor any
u e H*(02) N HY*(Q) we have:

(9 f(f]u + Auw)lu|r-1 sign u de :f{(p —1)|ujr-? }% G Ui Uy,
2

4,4=1
2
n

“+ > [ S (@), + Z] Ug,|u|? signu -+ (4 + E)[u]ﬁ’} dw >
in

=1 {,

g1 tml i=1

>f{v(p — 1) |us|?2 i Wy, + % [ i (@5)a, -+ 7)1] :
2

“g |ulrtsignu 4 (4 E)|u|f'} da;




4 MAURIZIO CHICCO
\f [ y5) w,+b] Ug, lulf’—lslgnudw‘<
desl §=1

n ¥
< (K,+ I(Qﬁﬂ]ﬂﬂ 2 e | dw<n(K; + Ky) (Jvlulf’"2 > g, dm) .
=1 P

P i=1
H z 1
. ( f\u]”dm) <n(K,+ K,) (77 (iu[f’“‘ﬂ z ug, do + y f]ulp dm)
a 2 i K

where 7 is any positive number.

(11) l fﬁ[u]pdm
Q2

<K3f|u}p dax .
@

Let us choose now 7 and 4, in the following way:

(K, + K,
2(p —1)

y(p—1)
= STy g7 021(3
N G, T Ky T T

Then from (9), (10), (11) and for 1> 1, we have

(12) f(iu + Auw)|ulp sign u do >

2

=1

.>v~(£—2—_§f|ulp‘ St dw + (A— 2 fl?tl”dw
Q

A simple use of Holder’s inequality in (12) concludes the proof
when p>2. R

LeMMA 2. — For any ¢ > 0 there exists an operator L of the type (5)
such that it results

1w — L] 50 < eollsyir Vo € H¥(Q) N HP(Q).

Proor. — For simplicity let us confine ourselves to the case
1< p<n/2, the other cases being similar.
We have:

(13)  |Lu— Lu 0 <n " max Z 10e; — @y o] 2 +
1,51

w12 3,1, PR L PR S (] PR [ PRRNE

i=1
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For known results (see for example [7]) there exist positive con-
stants K,, K, depending on p, n, 2 such that
(14) flees ”Lp,./(n..p,(9><K4 (k2. ”Lp(!)) ’

(18) [l ”Ll,,.,(,,..zp)m) < K[ v "L,,(.Q)

for any we H**(Q) N HL(LQ). Since C*(f) is dense in Cy(f) and
in L(2) (1<g<-o0), (13), (14), (15) yield the assertion. m

LeMMA 3. — For any & > 0 there exist constants Kg, K, depend-
ing on g P,y 2,bs¢ (E=1,2,..,n) such that

(16) 2 1By, ”L,,(m<5”uxa:”b,,(m+ K, ”“”L,,(!)) ’

=1

(17) leu “L,;(-Q) <& [y ”L,(Q) 4+ K, |w ”L,(!J)

for any u e H*(Q) N HL(8).

Proor. — Let us confine ourselves, for simplicity, to the case
1<p<n/2. For any >0 we can write

by =1b,+ b; (i=1,2..,n),
¢ =c¢+¢
in guch a way that
}: ”b; ”L,,(Q)<"7 ’ e’ ”Lm(m<7] )
gl
ess sup (lc”l + 5 ) l) =Ky <+o0.
i1
Whence it follows
(18) E "bz'%ac, ”L,,<!2)<77 E ”um, ”L,,,/(,._p-,(!))—{" K |u, ”L,,(.Q) ’
il i=1
(19) ou ”L,,(Q) <nju “Lp,,/(,,_“,> o+ Kgllu ”L,,(!?) .

From (14), (15), (18), (19) we get

(20) by 1 <n By [ ”L,,(Q)—!— Kylg ]z 5

=1

(21) [ow ”L,,(!)) <Ky | "L,(Q) + K |w ”LP(.Q) .
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We use now the inequality (see e.g.[7] page 122):

(22) _ [ | 2peer <77 | e lzp2 + Eall %] sy

valid for any >0 and any we H*’(Q), where K, depends on 7,
p,n, Q. From (20), (21), (22) it is easy to obtain (16), (17). =

LEMMA 4. — There exists a constant K,, depending on p,n, Q
and the coefficients in L such that

(23) [0 2,00 < Ko | L 000 + 0 ”Lp(!))}
for any we H(2) N H;"(2).

ProOF. — In the articles [8], [9] (see also [11] page 193) the fol-
lowing inequality is proven:

(24) (% "L,,(Q) <K11{

+ uunL,,(m}

n,
ai:’uw,m]
i,5=1

i Lp(82)

valid for any we H*(Q)N Hy?(2). The constant K, depends on
P, n, v, 2 and the modulus of continuity of the coefficients a.;.
From lemma 3 it follows, for any &> 0:

n
z a/z‘jum,x,
2,4=1

(25)

<[ Lul e+ 2 10500, 200 +-
i=1

{Zpt

+ ”0“”1,,,(.0) <[ Lu HL,,(Q) + 2¢ || thee ”L,(Q) + (K + K) ”Iu'”Lp(.Q) .

From (24), (25) it is easy to reach (23). =

4. - Main results.

THEOREM 1. — There exist two positive constants K, ﬁ, depending
on n, p, Q and the coefficients of L, such that

(26) [ | iy <z [ Lo + Awl; 0

for any we H*?(Q) N\ H;"(Q) and uniformly for any A=A

Proor. — Starting from (23) we get easily

(27) |20 ”L,,(9)<K10{ [ L+ Au ”Lp(m +(A-+1) ”“”L,(!h} .
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Let I be an operator like (5) such that
(28) “Lu —Lu ”LI,(.Q) < (2K,,) “w‘a:x ”Lp«))

for any u e H*"(Q) N Hy?(2). The existence of such an L is gua-
ranteed by lemma 2. Iet A, be the constant defined in lemma 1
corresponding to this L, so that

(29) [ “1,1,(52) <(A—A)! ”j;u + Au ”Ll,(!))

for any u ¢ H*(£2) N H}"(£2) and any A> 2,.
Using (27), (28), (29) we find

(30) 400 1220 < Byl L + A Iz, + (A4 1YA— 24~
N 2| e < Ho[1 4 (A 4 1)(A— A) | L+ Au ), 0 -+
+ (}' + 1)2~1(}' —'}‘0)—1 ”uwm”Lp(.Q) *

Choose now A =2 - 34,: from (30) it is easy to geb
(31) [ ”L1,<Q> <10K,o[| L + 2w ] 100

for any we H*(Q) N HY"(Q) and uniformly for any i1>7. m

COROLLARY 1. — We suppose that 2> A, where A is the constant
introduced in theorem 1; let f be given in L,(£2). Then the Dirichlet
problem
(32) T+ du =1 a.6. in O
o we H*(Q) A Hy?(42)
has one and only one solutiono Moreover, if we éupposo ¢>0 a.e. in
2, 1>0 a.e. in 2 it follows 4 >0 a.e. in L.

Proor. — Let us extend the definition of the coefficients a,; to
all of RB": denoting with the same letters the extended coefficients,
we suppose that a;,;e C°(R") (i,j=1,2,..,n), > a;t8;>v[t]> in R"

4,5=1
Then we extend the definition of b;,¢,f to all of RB* by setting
bi@)=c@)=flr)=01in R"— 0 ({=1,2,..,n).

Let 0 be a function in CF(R") such that:

f@(x) dw =1, 0>0 in R", O(w) =0 when |z|>1.

B®
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We set, for m =1, 2, ...:

@ =m0 (oY) astmay Gi=12 0

R"

and similarly 57, ¢™, f™. It turns out

n
(33)  lim max Y |a,;—a’| =0,
ot oo 4,51

(34)  lim {:%: 10— B i + e — 6™ syar+ 1f = 1" |y} = 0

and al®, b, ¢, f™ e OP(R") (m =1,2,...).

Set now
(35) L™ = e i aly i + 2 By 2 4™,
i,5=1 YOm0y S Ow

By controlling the previous proofs it is easy to check that inequality
(26), written for the operators L™:

(36) I “mm“L,,(Q) <K L™ u + Au Iz,

is wvalid for any we H*?(Q)N HY?(2) and any A>7, with the same
constants 1 and K,, uniformly with respect to m. This implies
the uniqueness of the solutions #'™ of the Dirichlet problems

Limgtmd Ayl = fom in ©Q
(37) { + f 5

w™ e H*?(2) n Hy*(£2) for m =1,2,....

For known results, since the operators L™ have regular coefficients,
Riesz-Fredholm theory can be applied to them so that the uni-
queness of the solutions of problems (37) implies their existence.
From (36), (37), it follows

(38) (K ”z,(!)><K12 I ”L,,(!)) m=1, 2, ..

From (38) we deduce the existence of a sequence, extracted from.
{4} en, weakly converging in H>?() to a function # which is
solution of problem (32): in fact, it is sufficient to pass to the limit
in (87) for m — oo remembering (33), (34). The uniqueness of u,
solution of (32), is immediate from theorem 1.
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The last assertion follows from the fact that, if ¢, >0 a.e.
in 0, it is also ¢™, f» >0 in Q (m=1,2,...); whence for known
theorems (see e.g. [12]) it turns out 4 >0 in 2 (m=1,2, ...). Since
u™ converges weakly to u in H>*({2), we get >0 a.e. in . =

THEOREM 2. — Let us suppose essinfe> 0, fe L (2). Then the
Dirichlel problem @

{ Lu={ a.e. in 2,
(39)

we H*?(Q2) n Hy*(82)

has one and only one solution. If b,eL(82) for at least one value
of i, the conclusion is valid even if essginfc: 0. Besides, if f=0

a.e. in 2, it turns out >0 a.e. in Q.

Proor. — It is very similar to that of [4] and I give it only for
completeness. Suppose A>74, where 1 is defined in theorem 1.
Then, by corollary 1, there exists the inverse operator of L - AI,
denoted by @,, which brings L,(2) onto H**(2) N Hy*(£2).

Since @, is a compact operator in L, (£2), its spectrum is discrete
and countable. Denoting by {1}, the sequence of the eigenvalues
of L and by {3}y that of the eigenvalues of &;, we have

(40) = (A4 ;) (1=12..)

for any A>1. Besides, from corollary 1, we can apply theorem 6.1
of [10] to the operator @, since it leaves invariant the cone of non-
negative functions in IL,(£2).

Proceeding as in [2], {3], [4] we find that there exists an eigen
value u, of G; which is real and has maximum modulus among
all the eigenvalues of G;:

(41) lsl < g Vu,; eigenvalue of G,.

Let us denote by A, the real eigenvalue of L corresponding to u,,
that is

From (40), (41), passing to the limit for A — -} oo, it follows

(42) Rel;> A, VA; eigenvalue of L.
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Therefore it is clear that the agsertion will be proved if we show
that 4,>0. To this purpose let is consider the operators Gy in-
verses of L -+ AI, where L™ are defined in (35). These opera-
tors G4 certainly exist if 2>74. From (33), (34) it follows

(43) mlirfw max { | L™y — Lu ”Lv(Q) : ”“m”L,,(Q) <1}=0.

This implies that the sequence of operators {Gy"}, .y converges to
G, in the uniform metric of

LIL,(Q); H*(Q) NH?(2)] (see e.g. [1] lemma 3.7 or [6]).
From a lemma of [6] (page 1091) it follows

(44) lim u™=p

i
m—>+-c0

uniformly for je N, where {u;"},.y is the sequence of eigenvalues
of @Y. In particular we have

JHm g™ = g
whence at once
(45) mlirfm AV =,,

where 2™ is the eigenvalue of L™ having minimum real part,
that is

(m)

L 1—Aw

Let us observe now that the usual maximum prineciple is valid for
the operators L, since they have smooth coefficients and it is
¢™>0 in O (see e.g.[12]). Moreover we have supposed ¢>k a.e.
in £, where k is a positive constant; it follows

KM=k, m=1,2,..
From (45) we get then
(46) A=k>0.

Therefore 0 is not an eigenvalue of L and problem (39) has one and
only one solution.
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Let us prove now that, if b, € L,(£2) for at least one value of 4,
the result is true even if essQ infe = 0. To this end it is sufficient

to use a trick by Picard just as in [6] (page 322). I refer the proof
only for readers’ convenience.
Let we H*(Q) N HY(Q), Lu=0 ae in £, essginf ¢ =0,

boe L, (2): let us show that # ==0 a.e. in . We set u = sv with
z= C—exp [hx,], where ¢ and h are constants to be determined
later. We have:

n n

n
L= — 3 0yu®— 2 Oylpu?—2 2 Gyl U+

2,5=1 Z,9=1 £,j=1

+ 2 bz, v+ 2 biv, 2+ v =0 a.e. in Q.

i=1 i=1

From the definition of z it follows

i 2, 2h expha,] 2 i
(47) & l_ Z P (—"E’[*“—l‘] z @y z bx) Ve,

2,41 i=1 t=1

2 < o y; 1
n (anh exp [h:r,l]z by h exp [hay] n 0) U] 0 ae in 0.

Now we choose the constants ¢ and % so that z>1 in £ and
h*— |
ess inf (@vz—l—)—lﬁ exp [ha;] + 0) >0.

In this way the eq. (47) becomes of the type
Lv=0 a.e. in 2,

where the coefficients of L, satisfy the hypotheses sufficient to ap-
ply the first part of the present theorem. It follows v = 0 a.e. in £,
that is 4 = 0 a.e. in £2. Therefore again 0 is not an eigenvalue
of L and problem (39) has one and only one solution. It remains
to prove that if >0 a.e. in Q it follows >0 a.e. in 2. We have
already observed that the maximum principle is valid for the oper-
ator L defined in (35), that is

(48) G =0 in Q m=12..)
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where ( (™ = [L']™". From (43) we get

(49) im 6] — 6 gy = 0

where G, = L. From (48) (49) it follows G,f>0 a.e. in 0, or
%>0 ae. in 2. ®

PROOF OF LEMMA 1 WHEN 1<p<2. - Up to now lemma 1,
and hence all the sequel, has been proven only for 2<p< -+ oo,
The proof of lemma 1 will now be completed using a trick suggested
to me by G. TALENTL

Suppose 1 < p < 2 and L as in (8). Let us consider the operator

7

i*:“z~”a o, T 2l “_“*

3,§=1 fo= " i

where
2, 06 ~
P2y ; =1
b 2:1 o, b (¢ y 2y ey M),y
. 20, & 0%,
e =0 — S —L 4
2:1 L i,jz=1awz 0w,

It is easy to verify that

(50) f(.iu) v dx :J‘u(i* v) diw
Q

o]

for any »e H>*(Q)N Hy"(8), any ve H*'(2)N HY"(Q) and p'=
= p(p —1)~1. Since 1< p<2 it follows 2<p' <+ o0; a,pplymg
lemma 1 to the operator L* we get the existence of a constant F
depending on », p, n and the coefficients of L* such that

(51) 2020 < <(A—21)" nL*” + @

whenever 1> ¥ and oe H*'(2) NH;”(2). From corollary 1 and
theorem 1 the Dirichlet problem

Lo+ =g a.e. in 2,
ve H*"(Q) n Hy" (2)
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has one and only one solution whenever g L, () and AsAt=
=2 84F. Now take any uweH**(Q2)NH}*(2): since |u|—* signue
€ L, (), there exists one and only one solution w of the Dirichelet
problem

(62)

T 4 Jaw — |u|P=1 sign a.c, in 2,
we H¥(Q2) n Hy™'(Q)

as soon as A> A*. It follows from (50), (51), (52) and Holder’s
inequality:

(53)

f[u]? dx :fu([ul"*l sign u) do :fu(ff"w 4 Aw) dow =
Q Q Q

:f(iu -+ Aw)w dwg“iu + At gy | 0] 2y <
Q

OB Tt A ) E ok 2o (A2 Bt Bt

From (53) it is easy to find

] 20 < (A — 23V L - 2w [P

for any e H*(Q) N HY(Q) and any A>17. &

(1]
(2]
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