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THIRD BOUNDARY VALUE PROBLEM IN H?>*Q)
FOR A CLASS OF LINEAR
SECOND ORDER ELLIPTIC PARTIAL
DIFFERENTIAL BQUATIONS ()

by Maurizio Cricoo (in Genova) ()

SOMMARIO. - §i sfudiano certi problemi al contorno di derivaia obliqua per
una classe di equazion! differenziali alle derivate parziali lineari ellitfiche
del secondo ordine, in cui i coefficienti delle derivate seconde sono (uniforme-
mente) continui e gli aliri appartengono ad opportune classi di sommabilitd.

SUMMARY. - Some oblique derivative boundary value problems for a class of
linear second order elliptic partial differential equafions are studied.
The coefficients of the second derivatives are supposed to be uniformly
continuous and ihe other ones fo belong to suitable L, classes.

1. Introduction.

The present work ig, in a certain sense, the natural continunation
of [3]. We consider the elliptic operator

n 2 n
(1) L=— 3 B W

ij =~
jy i==1 0; 0%5 = @;

where the coefficients a; arve uniformly eontinuous in the open set
£ and the other ones belong to suitable L, (£) clagses. Given
Fe€L, (), with 1 <p<{- oo, we look for sufficient econditions to
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solve the boundary valune problem

L == f a. e, in £,
. w€ H>?(82)
(2)
{2 ity - yu == 0 on 042,
Fe=m]

In the same way as in [3] for the Dirichlet problem, we prove
that if essginfe™>0 and y =0 (or also if p>mn, ¢=0, y > 0)
problem (2) has one and only one solution, The plan of the presend
work is very similar to that of [3]; I must nevertheless mention
that here the important results of [1],[2],{6], ... are used, unlike in [3].

2. Notations and hypoiheses.

In the following we shall always assume these hypotheses
without mention. Let £ an open bounded set in B, with >3
(for the case n ==9 see e. g. [9]). We suppose thut the boundary of
Q (denoted by 68) can be represented locally by a function with
countinuous second derivatives. Let p be a fixed real number greater
than 1; we put, for shortness:

0" n
e llzy0 = 2 | om0 3 1] e [0 = 2 | oy || ) «

We denote by H L2 (L), H?»?(£) the real Banach spaces cobtained

by completing C? () according to the norms

(3) | v Hnl,p(m == || u ”L,p(.Q) + |, L@
4) | HHZ Py = | HHLP(Q) -+l “mHLprm :
Let w» Py Vg s owy¥y) dencte the outward pormal unit vector to

= (
005 let Bi(i =1, 2,...,n), y be functions such that §;, y € C* (84
(G ==1,9..,0),

> Bi=1 on 44, Zvfi>0 on 88

1 i==1
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We denote by V the space

V == completion in H 2?2 (L) of

v € O% (4 ), P ﬂlv@—}vyv == § on 98 .

Let ay, b;, ¢ be real valued funetions defined in £ such that:
— ’ n
@€ 00 (), ay= aji(i,j == 1,9 ., 0), 2 aytity=mg|t [
1, J==1
in £, m, a positive cons’mmt b€ L,,. (;Q) (€ ==1,2,..,n), ¢€L; (&)
with r==a if 1l <<p <o, r>n il p==n, r==p il p>n;s=ma/2
if L <p<n2 s >n/2if p == )2/‘47 s ==p if p>n/2 Let L be the
operator defined in (1), ¥rom the previous hypotheses and from
known theorems on the spaces H 22 (42) (see e.g. [B]) it follows thatb
I is a bounded opevabtor from H»2(&) in L, (8) and in particniar
from V in L, (£).

3. Preliminary lemmas.

Lamya 1, For any & > 0 theve exisls two posim’ve constants I()
and A, (&, depending on 8, n, v, fi, v, ay {4, j==1,2,...,0) and L
also on & by, ¢ (b==1,9, .., n) such that for any w€ V and uniformly
Jor any A=k, it turns out

(5) || HL],(!J) = K, V|| L - A ”.Lp(m e HH'E:PJQ) .

PrOOF., From the hypotheses it follows that for example theo-
rem 4.1 of [6] or theorem 2.1 of [1] can be applied, obtaining the
existence of two constants I0, and m,, depending on £, n, p, fi, 7,
a;; (4, =1,2,..,n), such that

n
. E 1 G3j Vs + du
1, j=

Ly($2)

for any € V and uniformly for any 1 > m, . From known properties
of the space H?2?(£) (see e.g. [3] lemma 3) for any # > 0 there
exists a constant K, depending on 7, b, ¢, p, n, 2 snch that

(M) Z by Uy, -1 0u

i=1

= 2,y T L
= 7w HH‘»,,p(Q) + Ky |l ”Lp(m
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for any w€ H2?(Q). Let us fix an arbitrary ¢ > 0 and choose 5 =
= ¢ (2K~ in (7). Bo from (6), (7) it follows

K z(s »

l
8 |lu HLP( =7 H Ly + Au “Lp( =+ 2/1 Ly(2)

valid for any w€ V and any A>=m,. If now in (8) we choose A=
= A, == max (m, , 21, H;), we get easily

Ol = [ e

&
Ly(2) -+ Y | u HHZP@

for any w€V and any A=4,. §

LEMMA 2. There exisis a positive constant K, depending on £,
n, p and the coefficients of L such that

(10) e vy == K| L HL + | 2 | (Q)

for any we V.,

Proo?. From the fundamental results of [2] it burns out

)
2 + || I|Lp(.(2;§

(11) gm0 = 4 % H ; A
%, 'y

for any w€ V, where K, depends on p, n, £, 8i, y, @;5(4,j =1, 2,..., n).
From (7), (11) we deduce '

(12) HuHHZJ’(Q) < K} L ||L1)(.Q) + 9 H“HH%P\Q) 4 (Hy+ 1) “”“Lp(g)%
for any € V and any % > 0. It is sufficient to choose in (12) 9 =
== (21~ and (10) is reached with K, = 2K, (I, 4+ 1). §

4. Main results.

e
TruorEM 1. There ewists two positive constants i, K, depending
on n, p, i, v, § and the coefficients of L such thai

(13) 1 200y == I || I 4= A “Lp(s?)

Jor any w€V and wniformly for any i 21\
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Proor. From (10) it follows

(14) H“HHH? < K} L““!"“‘HL M‘*‘”H“HLP(Q)%

valid for any €V and any 4 > 0.
From (14) and lemma 1 we get

(18) [ w |l 2. pg) =<
1 + 1 A —{~ 1
§<1 e K) [ L A= 2, g + 2l iz

for any w€ V and uniformly for any 1= 1,.
By choosing in (15) g == (44, it turns out

(16) [ 2 || 20 @ = 2, (1 4 2K)) ) || L - Au HLp(m

valid for any w€ ¥V and any 1>=max(i,, 1). [
. - o~ 3
COROLLARY 1. ILet f be given in L, (&), let A= 1 where 1 is
the constant introduced in the preceding theovem. Then the boundary

value problem

g Lu~du=jf a. e in £,
(17)

% ue Vv

has one and only one solution.

Proor. Let L™ (m ==1,2,...) be the operators defined by

n 82
18 L = — ¥ qy— 2 b
(18) i, je=1 e 0%;j + =1

f m) 8

—{— o™
where b, ™ € 0™ (@) (i = 1,2, ...,%) and

(19) lim ,z||bm’ bs

m -+ -+ oo (i==l

ey + || €™ — e llzgaf = 0.

1t is easy to check that (13) is verified for the operators L") also,

with K; and 2 independent on m. Besides from the results of [1]
(theorem 2.1) and [6] (theorem 4.1) the operators L have non
emptA resolvent sef, therefore countable spectrum. From these factsy
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and from (13) (applied to the operators L) it follows that the
boundary value problems

JACORVICORSS Aut = f g, e in 4,
(2{}) . ('))}/ e 19 29 uab)
’lé m) cV

have one and only one solution ™ ag goon as A= 1 and f€ L, (52).
Moreover ib burns oub

(21) || s Sl

Hﬂ'm 6 L9

with //\ and &, independent on m,

From (21) there existe a sequ
which converges weakly in H 72 (&) to a fanction we V
t0 verify throngh (20) that « is a solution of problem
unigueness is immediate from (13).

nenee extracted

The next theorem is the
temporarily p > ».

tot
et

win result of the work; we suppose

TrroruM 2. Suppose p > n, 68 > ¢, miny 2> 0, egsinf e -
eminy > 0, f€ L, (8), Then the boundary value problem
a0
g Loy == §f @ ¢ in £,
(22)

%uﬁ 4

4

has one and only one solution. Moreover if ess inf j <
2

it twrns out max w < 0.

Proow, We begin to show that if j’“< 6 oa, e in &6 1
w0 a ¢ in &, whenece the unniqueness of the s,omtien
corollary 1 the operabtor L has non-emply resolvent se

fore its spectrum is diserete and couuntable. o {"ron'l

existence.

BSince w € H»? (L) and p > n, for kunown properties of the space
HB2 (L) (see . g, [B]) the first devivalives of 4 exist lu ever
of &2 (and are Holder continucus in £). This is sufficient to apply
the maximum principle: I give a sketch of proof for the sake of

y poind
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Let us pub M = max » and suppose M =0 in ovder to find a
2
contradiction. First of all, if w== 3 in £ it follows M == 0 and the

1'@&;‘111‘& is '@rovmsa m cally  equal to # but w(z) == M
g to find an (open) ball § contained
'hnt there exists a,€ 21 98 with
adiction because obviously (%)) == 0

(¢==1,2,..,n) while from known resulbs (see e, g, [7] page 67) i

& )

for somo ® € 82, the
in lwiacl, u (;L"; <

1

{(wy) > O where | is the oubward normal direchion to

rwg

herefore the maximum tained only in points of 0. If

@€V we have

n _ .
o« ﬂ 1 g—
(23) 2 Pl &) -} y M = 0,
z::l
[ ;
As it follows 2 fia a conbtradiction for the
P
alveady mentioned wesults ([8], [T] page 67): in fact any outward

devivative of « in » must be strictly nositive. So we get M < 0,

In conelusion frow F<Z 0 a. 0 in & we have
deduced ‘thut one of the following alterpatives is satisfied :

) w==0 in &;

(i) max u < 0.

a

Bince w==0 a. e, in £ implies a. &, in £, the lagt assertion
of the theorem eansily fellows,
£

In the folic

S

ion p >n is dropped.

o

owing corollary the assump

CoroLnLArY 2. Suppose ess inf -0, min y >0, F¢ L, (£
2 20
(L <p <o) Then theve ewists one and only one solution w of
the boundary value problem (22), Besides if <0 a e in $ it follows
<O a8 tn L,

Proow. Leb § L,y be the sequence of operators defined in
(18), (19). It is easy to verify (see e. g. lemma 2 of [3]) that

(24) lin  moax } || Lw — L0
M~ -} oo

Ly HwHul p(g)glg 0.

|
|
|
i
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of LM Ly ew converge,
regpechive cigenvalues of I (see e. 8. (4]
that the real numbers less than

Trom (24) one deduces that the eigenvalues

when m —» -+ oo, 10 the

pags 1091), Teb ng prove DOW
egs inf ¢ cannob e gigenvalues of any of the operators L (==
2

s= 1y 2y ea)e
16 will follow that the veal eigenvalues of 7, also are nob less
than ess infe, therefore U is nob zu eigenvalue of L.
Q
@ let ug suppose thabt 1 < essinfe. Obviously the coefficients
2
mey ©An be chosen in such a way

S ol e v of the operators § L g
that o™ = essinfc in 2. Let weV and LM w == AW & & in £
in order to prove thab 0 is nob an eigenvalue of Lbw it is gufficient

to show that w =10 a. & in &2
Since
n T
(25) — & ) 5 Way + & pim Wy, [c(m) e N =0 B e in o)
€, j= i==1

and o™ — 1> 0, theorem 2 can be applied : in fact B g™ € 0 ()
(== 1, 2y eay M) and therefors w € H 2,4 ({2) for all ¢ > 1.

Trom theorem 32 Wé got w==10 a. e in @, so 1is not an sigen-
valae of the operabors I (== 1, 2y 00 This means that the real
eigenvalues of I, are nob less than €88 infe, whence O iz not an

and problem (2%) has one and
ove now that if F=0 a. e
quence of func

only one golution.
in £ it turns oub
tiong such that

eigenvalue of L
We have to p¥
w0 @ e in Q. Lot 3 foudmew be a 8¢

]uh'b € Goo (@)7 fm é {) i}l @;7 (m == 1? 27 "')7
26 . . .
(20 i || = fo oy =0

m — - o0

Denote BY 3 mbmew the sequence of the golutions of the boundary

value problems
.L(.rn) WU = fm in Q 9 )
(m =1, 2, )

(27)
U €V

Tt is easy to check through (24), (26), (27) that

(28) lim || %~ %m HLp(Q) —

m - e 00
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