COMPOSIZIONI, INVERSE, ENDOMORFISMI

41. Siano φ e ψ applicazioni lineari di \mathbb{R}^3 in sé così definite:

 $\varphi(x,y,z) = (x+y\;,\;y\;,\;y) \qquad \qquad \psi(x,y,z) = (x+z\;,\;z-x\;,\;x).$ Descrivere $\varphi \circ \psi\;,\; y \circ \psi\;,\; \varphi^2\;,\; \psi^2$ e determinare basi per i loro nuclei e le loro immagini.

- 42. Sia $\varphi : \mathbb{R}^3 \to \mathbb{R}^3 \ \varphi(x, y, z) = (2x y, y 2z, x z).$
 - a. Calcolare $\varphi(1,1,1)$, $\varphi^2(1,1,1)$, $\varphi^3(1,1,1)$ e $\varphi^{-1}(1,1,1)$.
 - b. Dire che applicazione è $\varphi^2 1$ e dimostrare che è bigettiva.
- 43. Sia $\varphi: \mathbb{R}^3 \to \mathbb{R}^2 \ \varphi(x,y,z) = (x+y,\,3y-z)$. Risolvere tra i seguenti due problemi quello che ha soluzione e dire perché l'altro non ne ha:
 - a. Definire $\psi: \mathbb{R}^2 \to \mathbb{R}^3$ tale che $\psi \circ \varphi = 1$. (cosa significa 1 ?)
 - b. Definire $\psi: \mathbb{R}^2 \to \mathbb{R}^3$ tale che $\varphi \circ \psi = 1$. (cosa significa 1?)
- 44. Sia $\varphi: \mathbb{R}^3 \to \mathbb{R}^3 \ \varphi(x,y,z) = (z,x,-y)$. Provare che esiste $n \in \mathbb{N}$ tale che $\varphi^n = 1$. Dedurne che φ è invertibile e che φ^{-1} è una potenza di φ .
 - 45. Sia $V = L\{\cos(x), \sin(x)\} \subset C^{\infty}(\mathbb{R})$
- a. Sia $\varphi:V\to V$ l'applicazione lineare definita come $\varphi(f(x))=f(x+\pi/3)$. Provare che esiste un $n \in \mathbb{N}$ tale che $\varphi^n = 1$ e determinare il minimo di questi n.
- b. Sia $\alpha \in \mathbb{R}$ e sia $\varphi: V \to V$ l'applicazione lineare definita come $\varphi(f(x)) = f(x+\alpha)$. Dire per quali α esiste un $n \in \mathbb{N}$ tale che $\varphi^n = 1$.
- 46. Sia $\varphi: \mathbb{R}^3 \to \mathbb{R}^3 \ \varphi(x,y,z) = (y,y+z,-y-z)$. Provare che esiste $n \in \mathbb{N}$ tale che $\varphi^n = 0$ (che cosa significa 0?) e determinare il minimo di questi n.
- 47. Siano $\varphi: V \to W$ e $\psi: W \to U$ applicazioni lineari di IK-spazi vettoriali. Provare che:
 - a. $\ker \varphi \subset \ker(\psi \circ \varphi)$
 - b. $\operatorname{Im}(\psi \circ \varphi) \subset \operatorname{Im} \psi$
 - c. Se $\psi \circ \varphi = 0$ allora Im $\varphi \subset \ker \psi$. È vero il viceversa?
 - d. Se φ e ψ sono isomorfismi, allora $\psi \circ \varphi$ è isomorfismo.
 - e. Se φ e ψ sono iniettive (surgettive), è $\psi \circ \varphi$ iniettiva (surgettiva)?
- 48. Sia $\varphi: \mathbb{R}^3 \to \mathbb{R}^3$ tale che ker $\varphi \neq \{0\}$. Provare che esistono $\alpha, \psi: \mathbb{R}^3 \to \mathbb{R}^3$, $\alpha, \psi \neq 0$ tali che $\varphi \circ \alpha = 0, \ \psi \circ \varphi = 0.$
- 49. Sia W lo spazio vettoriale costituito da tutte le applicazioni lineari $\varphi: \mathbb{R}^3 \to \mathbb{R}^3$. Determinare la dimensione del sottospazio costituito dalle applicazioni lineari φ tali che $\varphi(1,2,3)=(0,0,0)$ e $\varphi(2,0,2) = \varphi(1,1,1)$.
- 50. Sia $\varphi: \mathbb{C}^3 \to \mathbb{C}^3$, $\varphi(x,y,z) = (x+y, y+z, x)$. Provare che φ è invertibile e determinare $\varphi^{-1}(x,y,z)$ per ogni (x,y,z).
- 51. Definire una applicazione lineare $\varphi:\mathbb{C}^5\to\mathbb{C}^5$ tale che $\ker\varphi\subset\operatorname{Im}\varphi\subset\ker\varphi^2$ e le dimensioni di questi spazi siano rispettivamente 2, 3, 4.
- 52. Sia $\varphi: \mathbb{C}^4 \to \mathbb{C}^4$ l'applicazione lineare definita come $\varphi(x,y,z,t) = (x+y-t\,,\,x-y\,,\,2x-t\,,\,z)$. Definire un'applicazione lineare $\psi: \mathbb{C}^4 \to \mathbb{C}^4$ tale che, detta ψ_1 la restrizione di ψ a Im φ si abbia $\varphi \circ \psi_1 = 1$.
- 53. Sia $A \in M_{44}(\mathbb{C})$ matrice di caratteristica 3. Dire in quali casi $\varrho(A \cdot B) = 3$ se $B \in M_{44}(\mathbb{C})$.
- 54. Sia A la matrice a lato. Determinare $B \in M_{44}(\mathbb{R})$ tale che $A \cdot B = 0$ e $B \cdot A$ abbia la massima caratteristica possibile.
- $A = \left(\begin{array}{cccc} 1 & 0 & 2 & 1\\ 1 & 1 & 0 & 2\\ 0 & -1 & 2 & -1\\ 2 & 1 & 2 & 3 \end{array}\right)$
- 55. Sia A come in 54. Determinare $B \in M_{44}(\mathbb{R})$ tale che $B \cdot A = 0$ e $A \cdot B$ abbia la massima caratteristica possibile.
- 56. Sia A come in 54. Determinare $B \in M_{44}(\mathbb{R})$ tale che $A \cdot B = B \cdot A = 0$ e B abbia la massima caratteristica possibile.
- 57. Determinare una matrice $B \in M_{44}(\mathbb{C})$ tale che $\varrho(A \cdot B) = 2$ e $\varrho(B \cdot A) = 3$ (dove A è la matrice a lato)