$\mathbf{\alpha}$	1
(fe.	
00.	-

NAME	FIRST NAME
Mathematics & O.R.	Part of Geometry and linear algebra. There are two pages in this text. Write the answers on this
April, 8th 2014	sheet using the white spaces. Please elucidate every answer in a brief but comprehensive way.
• /	

A Find b such that in the IR-vector space $C^0[0, b]$ equipped with the usual scalar product (by the integral) the functions $f_1 = x$ and $f_2 = 1 - x^2$ are orthogonal. Then write the projection of $f_1 + f_2$ onto $L\{f_2\}$. $\underset{\rm points}{2}$

4 points

Which of the following matrices has the best and which has the worst condition number? B

	(2	1	0)		(1	2	0`	\ <i>\</i>	$(-1/\sqrt{2})$	$1/\sqrt{3}$	$1/\sqrt{6}$
A =	-1	0	0	B =	2	-2	0	P =	$1/\sqrt{2}$	$1/\sqrt{3}$	$1/\sqrt{6}$
	0	0	2		$\left(0 \right)$	0	1,	/ (0	$1/\sqrt{3}$	$-2/\sqrt{6}$

Ge.2

5 points

4

C Let Q be the quadric $x^2 + 4xy - 2y^2 + 8z^2 + k = 0$

- 1. Find out which kind of quadric is Q for each $k \in \mathbb{R}$
- 2. For each $k \in \mathbb{R}$ say which conic is the intersection of Q with the plane z = hy.
- 3. Let k = 0. Write the tangent plane α to Q in (0, 2, 1) and say which kind of conic is the intersection of Q with α .

D Let V(0,0,4), A(2,2,0), B(4,0,0), P(3,1,0) be four points. points

- 1. Write both direct and inverse formulas for the change of coordinates a change of coordinates such that V i the origin, Z axes passes through Aand the X axis is parallel to the line through B and C.
- 2. Find the elliptic paraboloid of revolution, which has V as vertex, the line VA as axis and passes through P.

	SURNAME	First name				
	Mathematics & O.R. April 8th , 2014	Part of Analysis. There are two pages in this text. Write the answers on this sheet using the white spaces. Please elucidate every answer in a brief but comprehensive way.				
A	Compute the surface inte	egral $\iint_{\Sigma} f d\sigma$ where $f : \mathbb{R}^3 \to \mathbb{R}$ is defined by $f(x, y, z) = \frac{x^2}{x^2 + y^2}$				

and Σ denotes the part of the graph of $g(x, y) = x^2 - y^2 + 3$ which lies in the cylinder $\{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 \le 1\}$.

4 points

B Consider the vector field $\mathbf{F} : \mathbb{R}^3 \to \mathbb{R}^3$ defined by $\mathbf{F}(x, y, z) = (x \cos z, y \sin z, z^3).$ 4 points Use the divergence theorem to compute the outward flux of \mathbf{F} through the boundary of the cylinder $\{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 \le 1 \quad , \quad 0 \le z \le 1\}.$ \boxed{C} Compute the radius of convergence of the following power series

$$\sum_{n=3}^{+\infty} \frac{n^2}{1+n^3} x^n \qquad \sum_{n=0}^{+\infty} \frac{n^2+n!}{n!} x^n \qquad \sum_{n=0}^{+\infty} \frac{n!}{1+n^5} x^n$$

D Consider the 2π -periodic function $f : \mathbb{R} \to \mathbb{R}$, defined by

 $f(t) = t^2 - 2\pi t$ for $0 \le t < 2\pi$

and extended by periodicity to \mathbb{R} . Compute the Fourier coefficients of f and write its Fourier series.

4 points

4 points