NAME	First name
Mathematics & O.R.	Part of Geometry and linear algebra. There are two pages in this text. Write the answers on this
June, 11th 2014	sheet using the white spaces. Please elucidate every answer in a brief but comprehensive way.

3 points A Find $k \in \mathbb{R}$ such that in the \mathbb{R} -vector space $C^0[1, 2]$ equipped with the usual scalar product (by the integral) the functions $f_1 = x - k$ and $f_2 = 1/x$ are orthogonal. Then find an orthonormal basis for $L\{f_1, f_2\}$

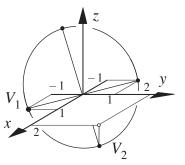
 \boxed{B} Which of the following matrices has the best and which has the worst condition number?

 $3 \\ \mathrm{points}$

$A = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix} \qquad B = \begin{pmatrix} -1 & 3 \\ 3 & -1 \end{pmatrix} \qquad P =$	$ \begin{pmatrix} 2/3 \\ 2/3 \\ 1/3 \end{pmatrix} $	-1/3 2/3 -2/3	$\begin{pmatrix} -2/3 \\ 1/3 \\ 2/3 \end{pmatrix}$
--	---	---------------------	--

5 C Let Q be the quadric $x^2 + y^2 + z^2 + 2xz + 2x + 2z = 0$

- 1. Find out which kind of quadric is Q.
- 2. Find the intersections of Q with the line $\{x = t : y = -t ; z = 1 + t\}$.
- 3. Write the tangent plane α in any of the points found above and describe the intersection between Q and α .



1. Write a cartesian representation for the ellipse with center in (0,0,0), and vertices in $V_1(1,-1,0)$ and $V_2 = (2,2,-1)$

D

5

points

2. Find the ellipsoid containing the ellipse and passing through P(1, 1, 1).

SURNAME .

4

FIRST NAME

Mathematics & O.R. | Part of Analysis. There are two pages in this text. Write the answers on this sheet using the white spaces. Please elucidate every answer in a brief but comprehensive way. June 11th, 2014

Consider the domain $D = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 \le z \le 4\}.$ A points

- i) Compute the barycenter of D.
- ii) Compute the moment of inertia of D with respect to the z axis, that is, the integral

$$\iiint_D (x^2 + y^2) \, dx dy dz$$

В 4 points

Consider the surface

$$\Sigma = \{ (x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 = 4, \ z \ge \sqrt{x^2 + y^2} \}.$$

Compute the surface integral

$$\iint_{\Sigma} f \, d\sigma,$$

where $f: \mathbb{R}^3 \to \mathbb{R}$ is defined by $f(x, y, z) = e^z + (x^2 + y^2)z$.

i) Compute the radius of convergence of the following power series:

$$\sum_{n=10}^{+\infty} \frac{n!}{1+e^{2n}n!} x^n.$$

ii) Determine for which values of the parameter $\alpha \in \mathbb{R}$ the following numerical series converges:

4 **D** Consider the 2π -periodic function $f : \mathbb{R} \to \mathbb{R}$, defined by

 $f(t) = \pi^2 - t^2$ for $-\pi \le t < \pi$

and extended by periodicity to \mathbb{R} . Compute the Fourier coefficients of f and write its Fourier series.

An.2

 $\sum_{n=1}^{+\infty} \frac{(n+\log n)^{\alpha}}{n^2}.$