Orthogonal matrices

02. Replace the stars with numbers in the matrix $Q \in M_{33}(\mathbb{R})$, so $Q = \begin{pmatrix} -2/3 & 2/3 & * \\ 2/3 & 1/3 & * \\ * & * & * \end{pmatrix}$

Spaces with a scalar product

- 11. Let $W = L\{(1,1,0), (0,1,1)\}$ be a subspace of \mathbb{R}^3 equipped with the euclidean norm.
 - a. Find an orthonormal basis for W and calculate the projection p of the vector v = (1, 2, 0)onto W.
 - b. Verify that v p is orthogonal to W.
- 12. In the vector space \mathbb{R}^4 equipped with euclidean norm, find the distance between the vector v = (1, 1, 1, 1) and the subspace $W = L\{(0, 1, 0, 0), (0, 0, 1, 2), (1, 1, 1, 0)\}.$
- $A = \left(\begin{array}{cc} 2 & 2\\ 2 & 5 \end{array}\right)$ 13. Explain why the matrix A induces a scalar product in \mathbb{R}^2 and find an orthonormal basis of \mathbb{R}^2 equipped with this scalar product.
- 14. Consider the matrix $A \in M_{33}(\mathbb{R})$.
 - a. Find all $k \in \mathbb{R}$ for which the following product $\langle v, w \rangle_* = v^T \cdot A \cdot w$ in $A = \begin{pmatrix} 1 & 2 & 0 \\ 2 & 8 & k \\ 0 & k & 1 \end{pmatrix}$ the vector space \mathbb{R}^3 ($v \in w$ column vectors), is a scalar product.
 - b. Choose a k such that (1,0,1) is orthogonal to (1,1,0) or to (0,1,0) or to (-1,1,0) using the previous scalar product.
 - c. Choose the k found above and calculate an o.n. basis for \mathbb{R}^3 .
- 15. In the vector space $C^{\infty}[1,2]$ with the usual scalar product (by the integral), verify the Cauchy-In the vector space $C^{-1}[1, 2]$ with the usual scenario $F_1 = \frac{ax^2 + b}{x}$ and $f_2 = \frac{1}{x}$ for all $a, b \in \mathbb{R}$. Find the couples a, b which make the inequality an equality

16. Let $V = L\{1, x\}, V_1 = L\{1, x, x^2\}$ be subspaces of $C^{\infty}([1, 1])$ (usual scalar product).

- a. Find an orthonormal basis of V and one of V_1 by means of Gram-Schmidt process.
- b. Find the projection of the function $f(x) = x^2$ onto V. Which is the relation between f(x) and its projection p(x)? What does the minimum property mean in this case? Calculate this minimum.
- 17. In the vector space $C^{\infty}[1,2]$ (usual scalar product).
 - a. Find an orthonormal basis for the subspace $W = L\{1/x, x\}$.
 - b. Calculate the projection p(x) of the function $f(x) = x^2$ onto W.
 - c. Let $f(x) \in C^{\infty}[1,2]$ be a function and p(x) be its projection onto W, Prove that, if at least one between $\int_{1}^{2} f(x)x \, dx$ and $\int_{1}^{2} \frac{f(x)}{x} \, dx$ is not zero, then $\int_{1}^{2} f(x)p(x) \, dx > 0$.

18. In the IR-vector space $C^0([-1,1])$ define a product in the following way: $\langle f,g \rangle_1 = \int_{-1}^{1} f \cdot g \cdot x^2 dx$

- a. Say why \langle , \rangle_1 is a scalar product.
- b. Find an o.n. basis for the subspace $W = L\{1, x\}$.
- 19. Find $a \in \mathbb{R}$ (a > 0) such that in the space $C^0[0, a]$ (a > 0) (usual scalar product) the two vectors $f_1 = 2 - x$ $f_2 = x$ are orthogonal. For this a, find the projection of the function $g = x^2$ onto the subspace $L\{f_1, f_2\}$

 $P = \begin{pmatrix} 1/\sqrt{2} & 1/\sqrt{6} & * \\ -1/\sqrt{2} & 1/\sqrt{6} & * \\ 0 & 2/\sqrt{6} & * \end{pmatrix}$

Matrix norms and condition number 21. Given the symmetric matrix $A = \begin{pmatrix} 1 & -2 \\ -2 & -1 \end{pmatrix}$ calculate $||A||_2$ and $\operatorname{cond}_2(A)$ 22. Let $A = \begin{pmatrix} 1 & 1 & 0 \\ 2 & -2 & 0 \\ 0 & 0 & 3 \end{pmatrix}$ Calculate: $\|A\|_2 \quad \|A\|_1 \quad \|A\|_{\infty}$ $\operatorname{cond}_2(A) \quad \operatorname{cond}_1(A) \quad \operatorname{cond}_{\infty}(A)$ 23. Let $A = \begin{pmatrix} 0 & 3 & 2 \\ 3 & -1 & 3 \\ 2 & 3 & 0 \end{pmatrix}$ a. Knowing that $P_A(x) = (x+4)(x+2)(5-x)$, calculate $||A||_2$, $||A||_1$ and $||A||_{\infty}$. b. Calculate $\operatorname{cond}_2(A)$ c. Let $b = [1, 1, 1]^T$ and $b_1 = [1, 1, 2]^T$ and let x and x_1 be the solutions of linear systems $Ax = b \in Ax = b_1$. Estimate an upper bound for $\frac{\|x - x_1\|_2}{\|x\|_2}$ without calculating x and x_1 . 24. Let $A = \begin{pmatrix} -1 & 2 & -1 \\ 2 & 2 & -2 \\ -1 & -2 & -1 \end{pmatrix}$ a. Calculate the eigenvalues of A. b. Calculate $||A||_2$ and $\operatorname{cond}_2(A)$. c. Find among the matrices A+I, A-I, A-2I the one with with the best condition number and the one with with the worst condition number. 25. We provide some data about the matrix A: • The eigenvalues of the matrix $A^T \cdot A$ are (approximately) 0.0022, 2.4175, 18.8818, 91.6986 • The solution of the system $Au = (1 , 4 , 4 , 4)^T$ is $x = (2/3, -2/3, -1, 2)^T$ Using the given data, give an estimate for the solution x_1 of $Au = (1.1, 4, 3.9, 4)^T$ $A_k = \left(\begin{array}{rrr} 2 & 3 & 0\\ 0 & -2 & 0\\ 0 & 0 & k \end{array}\right)$ 26. Find all the $k \in \mathbb{R}$ for which it is possible to calculate the condition number of A_k and draw the graphic of the function $f(k) = \text{cond}_2(A_k)$ (defined for all k found above) 27. Replace the stars with numbers in the matrix A, so that A is a. Using the properties of A, calculate $\operatorname{cond}_2(A)$ and find its eigenvalues. b. Calculate $\operatorname{cond}_2(A - kI)$ for all h for all h for a line for a l b. Calculate $\operatorname{cond}_2(A - kI)$ for all k for which it make sense.