Compiti

Compito di Matematica 3 | Parte di Geometria. Testo composto da due pagine. Rispondere alle domande su questi fogli usando gli appositi spazi e giustificando brevemente ma esaurientemente tutte le risposte. 6 novembre 2003

- Dati i sistemi lineari Ax = b e $Ax = b_1$ con $A = \begin{pmatrix} 1 & 1 & 2 \\ 2 & 3 & 5 \\ 1 & 1 & 1 \end{pmatrix} b = \begin{pmatrix} 1 \\ 3 \\ 1 \end{pmatrix} b_1 = \begin{pmatrix} 1.1 \\ 2.9 \\ 1 \end{pmatrix}$
 - 1. Verificare che le soluzioni dei due sistemi lineari sono rispettivamente x = (0, 1, 0) e $x_1 = (0.3, 0.6, 0.1)$
 - 2. Usare questi dati per dare una stima inferiore di $cond_2(A)$
 - 3. Usare i dati anche per dare una stima inferiore di $cond_1(A)$
 - 4. Verificare che $A^{-1} = \begin{pmatrix} 2 & -1 & 1 \\ -3 & 1 & 1 \\ 1 & 0 & -1 \end{pmatrix}$ e quindi calcolare esplicitamente cond₁(A).
- Nello spazio vettoriale $C^{\infty}[1,2]$ dotato del prodotto scalare usuale (coll'integrale).
 - 1. Calcolare una base ortonormale per il sottospazio $W = L\{1/x, x\}$
 - 2. Calcolare la proiezione ortogonale p(x) della funzione $f(x) = x^2$ su W.
 - 3. Dire cosa significa il fatto che p(x) è il vettore di W con la minima distanza da f(x).
 - 4. Sia $f(x) \in C^{\infty}[1,2]$ una funzione e p(x) la sua proiezione su W, Dimostrare che, se almeno uno tra $\int_{1}^{2} f(x)xdx \in \int_{1}^{2} \frac{f(x)}{x}dx \text{ è non nullo, allora } \int_{1}^{2} f(x)p(x)dx > 0.$

Consiglio: partire dalla funzione 1/x per calcolare la base

Compito di Matematica 3 | Parte di Geometria. Testo composto da due pagine. Rispondere alle domande su questi fogli 17 novembre 2004 usando gli appositi spazi e giustificando brevemente ma esaurientemente tutte le risposte.

- \mathcal{A}

 $A = \left(\begin{array}{ccc} 6 & 3 & 4 \\ 3 & 2 & 0 \\ 4 & 0 & 9 \end{array}\right)$

Data la matrice 10×10 A1 1. Verificare che -1/2 è un autovalore con molteplicità 9.

1 2. Verificare che $(1,1,\ldots,1)$ è autovettore e calcolare il relativo autovalore.

4 3. Sia $b=(1,0,1,0,1,0,1,0,1,0,1,0)^T$. Osserviamo che se $x=\left(-\frac{18}{19},\frac{20}{19},-\frac{18}{19},\ldots,\frac{20}{19}\right)$, allora Ax=b. Sostituiamo b con $b_1=(1\pm\delta,0\pm\delta,\ldots,0\pm\delta)^T$ con $b_1=(1\pm\delta,0\pm\delta,\ldots,0\pm\delta)^T$

Sostituiamo $b \operatorname{con} b_1 = (1 \pm \delta, 0 \pm \delta, \dots, 0 \pm \delta)^T \operatorname{con} |\delta| < 0.1.$

Usando la norma -2, dare una stima per ε tale che $Ax_{\varepsilon}=b_1$ se $x_{\varepsilon}=\left(-\frac{18}{19}\pm\varepsilon\,,\,\frac{20}{19}\pm\varepsilon\,,\dots,\,\frac{20}{19}\pm\varepsilon\,\right)$

- 5 \mathcal{B} In \mathbb{R}^4 dotato del prodotto scalare euclideo usuale sia $W = L\{(2, 1, -1, 0), (0, 1, 1, 2)\}.$
 - 1. Scrivere la matrice P di proiezione su W.
 - 2. Posto w = (1, 1, 1, 1), calcolare w_1 sua proiezione su W e confrontare ||w|| con $||w_1||$.
- Nell' \mathbb{R} -spazio vettoriale $C^0[0,1]$ dotato del prodotto scalare usuale (coll'integrale), determinare la proiezione ortogonale p(x) della funzione f(x) = 3x + 1 sul sottospazio $L\{5x - 3, \sqrt{x}\}$.

Compito di Matematica 3 | Parte di Geometria. Testo composto da due pagine. Rispondere alle domande su questi fogli usando gli appositi spazi e giustificando brevemente ma esaurientemente tutte le risposte. **10 novembre 2005**

5 \mathcal{A} Data la matrice 3×3 A forniamo i seguenti dati:

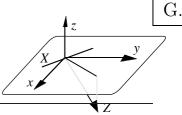
Il massimo autovalore in modulo è 12.08 circa

Il sistema $Ax = b \operatorname{con} b = \begin{bmatrix} 3 & 1 & 4 \end{bmatrix}^T$ ha la soluzione $\begin{bmatrix} 1 & -1 & 0 \end{bmatrix}^T$

Il sistema $Ax = b \operatorname{con} b = \begin{bmatrix} 3 & 1.2 & 4 \end{bmatrix}^T$ ha la soluzione $\begin{bmatrix} 2.08 & -2.52 & 0.48 \end{bmatrix}$

Dedurne una valutazione per il minimo autovalore in modulo di A.

Determinare <u>tutti</u> i sistemi di assi ortogonali X, Y, Z tali che Z abbia la direzione del vettore (1,1,-1) e X giaccia sul piano xy Scrivere poi le matrici ortogonali di passaggio.



In $C^{\infty}([1,2])$ dotato del prodotto scalare usuale (con l'integrale) siano:

$$f_1 = ax^2 + 1$$
 $f_2 = 1/x$.

- 1. Determinare a in modo che f_1 e f_2 siano ortogonali.
- 2. Calcolare la proiezione ortogonale di g=1 (funzione costante) su $W=L\{f_1,f_2\}$
- 3. Senza svolgere i conti (troppo lunghi), scrivere una formula per la distanza tra $g \in W$.

Esami 2004

Esame di Matematica 3 14 gennaio 2004

Parte di Geometria. Testo composto da un foglio (due pagine). Rispondere alle domande su questi fogli negli appositi spazi e con giustificazioni brevi, ma esaurienti.

 $\boxed{3}$ A Nell'IR-spazio vettoriale \mathbb{R}^2 è dato il prodotto scalare \langle , \rangle_s così definito:

Se $v, v_1 \in \mathbb{R}^2$ (vettori colonna), allora $\langle v, v_1 \rangle := v^T \cdot A \cdot v_1$ dove $A = \begin{pmatrix} 2 & 2 \\ 2 & 5 \end{pmatrix}$

- 1. Dire perché $\langle \ , \ \rangle_s$ è un prodotto scalare.
- 2. Determinare una base ortonormale per \mathbb{R}^2 .

 $\boxed{3}$ Data la quadrica $Q: x^2 + xy + z = 0$

- 1. Dire cosa è l'intersezione tra Q e i tre seguenti piani: $\alpha: x+y=0$ $\beta: x-y=0$ $\gamma: z=0$.
- 2. Dire per esclusione, dalle tre sezioni studiate, che quadrica è Q.
- 3. Scrivere i cilindri non degeneri con generatrici paralleli agli assi coordinati contenenti la conica intersezione tra $Q \in \beta$.
- - 1. Calcolare $cond_2(A)$.
 - 2. Calcolare $\operatorname{cond}_2(A+kI)$ e $\operatorname{cond}_2(A^n)$ per ogni $k \in \mathbb{R}$ e per ogni $n \in (n \neq 0)$
 - 3. Determinare l'unico $k \in \mathbb{R}$ e gli unici $n \in \text{per cui rispettivamente cond}_2(A+kI)$ e cond $_2(A^n)$ sono minimi.

Esame di Matematica 3 3 febbraio 2004

Parte di Geometria. Testo composto da un foglio (due pagine). Rispondere alle domande su questi fogli negli appositi spazi e con giustificazioni brevi, ma esaurienti.

- \mathcal{A} | Nello spazio vettoriale $C^{\infty}[1,2]$ dotato del prodotto scalare usuale (coll'integrale), determinare una base ortogonale per il sottospazio $W = L\{1/x^2, 1/x^3\}$
- 4 È data l'ellisse di centro (0,2,0) di vertici $V_{1,2}(\pm 1,2,0)$ e $V_{3,4}(0,2,\pm 4)$. Sono poi date le due rette $\begin{cases} y=\pm 2x \\ z=0 \end{cases}$ che intersecano l'ellisse in $V_{1,2}$.
 - 1. Scrivere una rappresentazione cartesiana per l'ellisse.
 - 2. Scrivere il cono quadrico contenente le due rette e l'ellisse.
- - 2. Il sistema lineare $Ax = [8 \ 1 \ 1 \ 5]^T$ ha la soluzione esatta $[3.7500 \ -3.2500 \ 5.5000 \ -3.7500]^T$ Dare (senza calcolarla esplicitamente) una stima per la soluzione di $Ax = \begin{bmatrix} 8.1 & 0.9 & 1.1 & 4.9 \end{bmatrix}^T$

Esame di Matematica 3 17 febbraio 2004

Parte di Geometria. Testo composto da un foglio (due pagine). Rispondere alle domande su questi fogli negli appositi spazi e con giustificazioni brevi, ma esaurienti.

p ri

 \overline{A} Nello spazio vettoriale $C^{\infty}[-1,1]$ dotato del prodotto scalare usuale (coll'integrale), determinare la proiezioni $p_1(x)$ e $p_2(x)$ rispettivamente di $\sin(x)$ e di $\cos(x)$ sul sottospazio $W = L\{x, x^2\}$ e dire quale problema di minimo risolvono p_1 e p_2 .

4 \mathcal{B}

- 1. Dire che quadrica è $kz^2 + 2z + 4x^2 y^2 = 0$ per ogni $k \in \mathbb{R}$.
- 2. Dire per quali k la sua intersezione col piano x = 2y è degenere e scrivere le rette che la compongono.

$$A = \left(\begin{array}{rrr} 2 & 0 & 2 \\ 0 & k & 0 \\ -2 & 0 & 1 \end{array}\right)$$

- 1. Calcolare $\operatorname{cond}_1(A)$ e $\operatorname{cond}_2(A)$ per ogni $k \neq 0$
- 2. Risolvere per k = 1 il sistema lineare $Ax = \begin{bmatrix} 2 & 1 & 1 \end{bmatrix}^T$ e stimare la soluzione di $Ax = \begin{bmatrix} 1.9 & 0.9 & 0.9 \end{bmatrix}^T$

Esame di Matematica 3 26 aprile 2004

Parte di Geometria. Testo composto da un foglio (due pagine). Rispondere alle domande su questi fogli negli appositi spazi e con giustificazioni brevi, ma esaurienti.

 \mathcal{A}

- 1. Determinare una rappresentazione cartesiana per le due circonferenze di asse $\begin{cases} x = 1 \\ y = z \end{cases}$ e rispettivamente di raggio 1 e centro $C_1(1,0,0)$ e raggio 2 e centro $C_2(1,2,2)$
- 2. Scrivere una rappresentazione cartesiana per l'iperboloide a una falda avente γ_1 come cerchio di gola e contenente γ_2 .

 $\boxed{\mathcal{B}}$ Nell' \mathbb{R} -spazio vettoriale \mathbb{R}^2 è dato il prodotto scalare $\langle \ , \ \rangle_s$ così definito: se $v, v_1 \in \mathbb{R}^2$ (vettori colonna), allora $\langle v, v_1 \rangle := v^T \cdot A \cdot v_1$

$$A = \left(\begin{array}{cc} k & 2\\ 2 & 1 \end{array}\right)$$

- 1. Determinare per quali $k \in \mathbb{R} \langle , \rangle_s$ è un prodotto scalare.
- 2. Scelto uno di questi k, determinare una base ortonormale per \mathbb{R}^2 .

C È data la matrice A

$$A = \begin{pmatrix} 1/3 & -2/3 & * \\ -2/3 & 1/3 & * \\ 2/3 & * & * \end{pmatrix}$$

- 1. Completare A a matrice ortogonale simmetrica.
- 2. Dedurre dalle proprietà di A quali sono i suoi autovalori.
- 3. Calcolare $\operatorname{cond}_2(A + kI)$ per ogni $k \neq 0$

Esame di Matematica 3 4 giugno 2004 Parte di Geometria. Testo composto da un foglio (due pagine). Rispondere alle domande su questi fogli negli appositi spazi e con giustificazioni brevi, ma esaurienti.

È data la matrice reale simmetrica $A=\left(\begin{array}{ccc}1&k&0\\k&3&1\\0&1&1\end{array}\right)$ al variare di $k\in{\rm I\!R}.$

- 1. Dire per quali $k \in \mathbb{R}$ la forma quadratica $Q : \mathbb{R}^3 \longrightarrow \mathbb{R}$ associata da A è definita positiva.
- 2. Scelto uno di questi k ($k \neq 0$), determinare una base ortonormale per \mathbb{R}^3 dotato del prodotto scalare $\langle v, w \rangle_s = v^T A w$ (vettori colonna). (Sugg: Iniziare con la base canonica, ma non nel solito ordine...)
- 3. Discutere $cond_2(A)$ al variare di $k \in \mathbb{R}$.
- 4. Posto k=1, descrivere l'insieme $q=\{v\in\mathbb{R}^3: ||v||=1\}$ determinandone anche almeno un asse di simmetria.
- 5. Sempre per k=1, descrivere l'insieme $q \cap \{v \in \mathbb{R}^3 : \langle v, (1,-1,0) \rangle = \alpha\}$ dicendo se esiste un α per cui è costituito da un solo vettore. (stavolta prodotto scalare euclideo)

Esame di Matematica 3 5 luglio 2004

Parte di Geometria. Testo composto da un foglio (due pagine). Rispondere alle domande su questi fogli negli appositi spazi e con giustificazioni brevi, ma esaurienti.

Nello spazio vettoriale $C^{\infty}[-\pi,\pi]$ dotato del prodotto scalare usuale (coll'integrale), determinare la distanza del vettore f = 1 + 2x dal sottospazio $W = L\{\sin(x), \cos(x)\}$

Gli autovalori della matrice $A \cdot A^T$ sono (all'incirca)

- \mathcal{C} Nello spazio in cui è stabilito un sistema di coordinate cartesiane ortogonali monometriche Oxyz
 - 1. Determinare una rappresentazione cartesiana per l'ellisse di centro C(1,1,1) e assi $\{y=1; z=1\}$, $\{x=1\;;\;z+y=2\}$. Il primo semiasse (quello orizzontale) di lunghezza 2, il secondo di lunghezza $\sqrt{2}$.
 - 2. Determinare una rappresentazione cartesiana per il paraboloide ellittico di vertice V(1,0,0) (e asse la retta \overline{CV}) contenente l'ellisse.

Esame di Matematica 3 15 settembre 2004

Parte di Geometria. Testo composto da un foglio (due pagine). Rispondere alle domande su questi fogli negli appositi spazi e con giustificazioni brevi, ma esaurienti.

- Nello spazio vettoriale $C^{\infty}[1,2]$ dotato del prodotto scalare usuale (coll'integrale), verificare la diseguaglianza di Cauchy-Schwarz per le due funzioni $f_1 = \frac{ax^2 + b}{x}$ e $f_2 = 1/x$ al variare di $a, b \in \mathbb{R}$ e dire per quali a, b la diseguaglianza è stretta o massima.
- Data la matrice simmetrica A dipendente dal parametro k

$$A = \left(\begin{array}{ccc} 3 & 0 & 2 \\ 0 & k & 0 \\ 2 & 0 & 0 \end{array}\right)$$
 er quali

- 1. Calcolare $\operatorname{cond}_2(A)$ al variare di $k \in \mathbb{R}$, nei casi in cui è possibile, discutendo per quali $k \in \mathbb{R}$ massima o minima.
- 2. Data la matrice A per k=-1 e $\underline{x}=[x\ y\ z]^T$, discutere la quadrica $\underline{x}^T\ A\ \underline{x}=2y+\lambda$ al variare di $\lambda\in\mathbb{R}$.
- 3. Determinare un λ per cui la quadrica sia un iperboloide a una falda di rotazione e determinare l'asse di rotazione.
- 4. Per questo λ scrivere il cerchio di gola dell'iperboloide e scrivere una rotazione di coordinate che porti la circonferenza sul piano Z=1.