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1 Abstract. Let S ={ s0 = 0 <s1 < ... <si...} ⊆ IN be a numerical non-ordinary semigroup; then
set, for each i, νi := # {(si−sj ,sj) ∈ S2}. We find a non-negative integer m such that dORD(i)=νi+1

for i ≥ m, where dORD(i) denotes the order bound on the minimum distance of an algebraic geometry
code associated to S. In several cases (including the acute ones, that have previously come up in the
literature) we show that this integer m is the smallest one with the above property. Furthermore it
is shown that every semigroup generated by an arithmetic sequence or generated by three elements is
acute. For these semigroups, it is also found the value of m.

Index Therms. Numerical semigroup, Weierstrass semigroup, semigroup generated by an arith-
metic sequence, algebraic geometry code, order bound on the minimum distance.

1 Introduction

Let IN denote the set of all non-negative integers and let S ⊆ IN be a numerical semigroup,
S = {s0 = 0 < s1 < ... < si < ...}. The associated sequence {νi}i∈IN is defined by

νi := #{(sj , sk) ∈ S2 | sj + sk = si}.

When S is the Weierstrass semigroup of a family {Ci}i∈IN of one-point algebraic geometry (AG) codes
(see, e.g. [6]), Feng and Rao proved that the minimum distance of the code Ci can be bounded by the
so called order bound [4] defined by means of the sequence {νi}i∈IN:

dORD(Ci) := min{νj : j > i}.

The sequence {νi}i∈IN is not decreasing from a certain i [9]; then there exists an integer m determining
the largest point at which the sequence decreases, that is, dORD(Ci) = νi+i for i ≥ m. The parameter
m is already known for the so-called acute semigroups [1] and in such a case it is equal to

m = min{c+ c′ − 2− g, 2d− g}

where c, c′, d are the conductor, the subconductor and the dominant of the semigroup, as in (2.1).
In this work we develope an analysis of m and we classify semigroups in terms of a new parameter

t. Using this classification and some small condition on the dominant d, we derive new results for the
parameter m. In several cases the actual value of m is stated and in the remaining cases an upper
bound m′ ≥ m is given (Theorem 3.1). In particular, dORD(Ci) = νi+i for all i ≥ m′ (3.2).
A consequence of these results is that for any numerical semigroup

m ≤ min{c+ c′ − 2− g, 2d− g}

and that m = min{c+ c′−2− g, 2d− g} if and only if either c+ c′−2 ≤ 2d or t = 0 (Corollary 3.3).
Further, in Section 4, we study the classes of acute semigroups, semigroups generated by an

arithmetic sequence and semigroups generated by an almost arithmetic sequence. We show that
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semigroups generated by an arithmetic sequence are acute as well as the semigroups generated by
three integers, which are a particular case of semigroups generated by an almost arithmetic sequence.

Finally an analysis on the semigroups of Cohen-Macaulay type 2 or 3 shows that all numerical
semigroups of type 2 are acute while semigroups of type 3 are acute except for the case when the
subdominant and the subconductor satisfy d′ ≤ c′ − 3. Furthermore, for all numerical semigroups
generated by an arithmetic sequence and for all numerical semigroups of type 2 or 3, a formula for
the parameter m is presented.

In the next section (Section 2) we fix the setting and notation of the paper, moreover we recall
some known results for the convenience of the reader.

2 Preliminaries

We begin by giving the setting of the paper.

Setting 2.1 In all the article we shall use the following notation. Let IN denote the set of all non-
negative integers. A numerical semigroup is a subset S of IN containing 0, closed under summation
and with finite complement in IN.
We denote the elements of S by

s0 = 0 < s1 := e < s2 < . . . < si . . . for every i ∈ IN

and we set S+ := S \ {0}, S(1) := {b ∈ IN | b+ S+ ⊆ S}.

The following is a list of symbols and relations associated to a semigroup S, to be used in the sequel.

H := IN \ S, the set of gaps of S
g := #(IN \ S), the number of gaps of S
g(i) := #{σ ∈ H | σ < si}, the number of gaps of S which are smaller than si, for i ∈ IN
c := min {r ∈ S | r + IN ⊆ S} is the conductor of S
n := c− g, the number of the elements of S preceding the conductor, so that c = sn

d := sn−1 the greatest element in S preceding c, is the dominant of S
` := c− 1− d = #{σ ∈ H | σ > d}, the number of gaps of S greater than d
c′ := sp = max{si ∈ S | si ≤ d and si − 1 /∈ S} is the subconductor of S
d′ := sp−1, the greatest element in S preceding c′, when d > 0
τ := #(S(1) \ S), is the Cohen−Macaulay type of S (CM−type for brevity)
e := s1 is the multiplicity.
H1 := {σ ∈ H | c− 1− σ ∈ S}, the set of gaps of the first type of S
H2 := {σ ∈ H | c− 1− σ /∈ S}, the set of gaps of the second type of S
µ := max{σ ∈ H2}, the greatest gap of the second kind of S, when H2 6= ∅

For si ∈ S, following [6] and [1], we shall denote according to the convenience by

Ni or N(si) := {(sj , sk) ∈ S2 | si = sj + sk} = {(sj , si − sj) ∈ S2}
As(si) := {(x, y) ∈ Ni | x ≥ s}, for every s ∈ S
Di or D(si) := {(x, y) ∈ H2 | x+ y = si} = {(x, si − x) ∈ H2}
νi or ν(si) := #Ni, the cardinality of Ni

dORD(i) := min{νj | j > i}, the order bound.

We shall always assume that e > 1, so that S 6= IN. With this notation the semigroup has the
following shape (where “ ∗ ” denotes gaps and “←→ ” intervals without any gap):

` gaps

S = {0, ∗ . . . ∗, e, . . . d′, ∗ . . . ∗, , c′ ←→ d, ∗ . . . ∗, c→}.

Recall also that a semigroup S is called

• ordinary if S = {0} ∪ {i ∈ IN, i ≥ c},



• acute if S is ordinary or if S is non-ordinary and c, d, c′, d′ satisfy c− d ≤ c′ − d′.
[1, Defs. 5.1 and 5.6.]

• symmetric if for every x ∈ IN, x ∈ S ⇐⇒ c− 1− x /∈ S, equivalently, H2 is empty.
Also, S is symmetric if and only if the Cohen-Macaulay type of S is one.

The aim of this paper is the study of the behaviour of integers νi’s: in the next theorem we collect
some important well-known results on these parameters.It is well known that the sequence (νi)i∈IN is
not decreasing for i >> 0. In [1] the author finds the smallest integer m such that dORD(i) = νi+1

for all i ≥ m, when the Weierstrass semigroup S is acute (see (2.4) and (2.5) below). Moreover m = 0
if and only if S is ordinary. In fact, the only numerical semigroups for which the sequence (νi)i∈IN is
non-decreasing are the ordinary semigroups [1, Th. 7.3].

Theorem 2.2 Let S be as in 2.1, and let i ∈ IN. Then

(1) νi = i− g(i) + #Di + 1, ∀ i ∈ IN. [9, Th. 3.8]

(2) νi = i+ 1− g, for every i such that si ≥ 2c− 1.

As a consequence of Theorem 2.2, the sequence (νi)i∈IN is non-decreasing for i large enough.

Definition 2.3 We define the parameters m and t as follows

m := min{j ∈ IN such that the sequence (νi)i∈IN is non-decreasing for i > j}

t := min{j ∈ IN such that d− t ∈ S and d− `− t /∈ S}.

Remark 2.4 Theorem 2.2 implies that m > 0 for every non-ordinary semigroup, and that m ≤
2c− 2− g, namely sm ≤ 2c− 2. Recalling the definition of dORD(i) above, one has:

• dORD(i) = νi+1, for every i ≥ m.

It then becomes important to find the integer m, and, for this, to study the behavior of the sequence
(νi)i∈IN. Clearly it is enough to consider the cases: si ≤ 2c− 2, namely i ≤ 2c− g − 2.
The meaning of t will be clear in the following sections.

We recall next theorem which gives m for acute semigroups [1, Th. 6.3].

Theorem 2.5 Let S be a non-ordinary acute semigroup. Then,

m = min {c+ c′ − 2− g, 2d− g}.

3 The order bound on the minimum distance

By studying the behaviour of the νi’s, we can find the integer m defined in (2.3) for several classes
of semigroups, which properly include the acute ones. In the other cases it is possible to give upper
bounds for m.

The aim of this section is to prove the following Theorem 3.1 and Theorem 3.2.

Theorem 3.1 With Setting 2.1, let S be a non-ordinary semigroup. Let m, t be as in (2.3). Then,

(1) When c+ c′ − 2 ≤ 2d: m = c+ c′ − 2− g.

(2) When c+ c′ − 2 > 2d:

(a) If 0 ≤ t ≤ 2: m = 2d− g − t.
(b) If t = 3: m = 2d− g − 3 if and only if {d− 1, d− 2} ∩ S 6= {d− 2}.

m ≤ 2d− g − 4 if {d− 1, d− 2} ∩ S = {d− 2}.



(c) If t = 4: m = 2d− g − 4 if and only if {d− 1, d− 2, d− 3} ∩ S 6= {d− 3}.
m ≤ 2d− g − 5 if {d− 1, d− 2, d− 3} ∩ S = {d− 3}.

(d) If t ≥ 5: m ≤ 2d− g − 4.

Theorem 3.2 Let S be a non-ordinary semigroup associated to a family of AG codes Ci, i ∈ IN.
Then the equality dORD(i) = νi+1 holds in the following cases.

(1) When c+ c′−2 ≤ 2d: if and only if i ≥ c+ c′ − 2− g.

(2) When c+ c′ − 2 > 2d:

(a) when 0 ≤ t ≤ 2: if and only if i ≥ 2d− g − t
(b) when t = 3 and {d− 1, d− 2} ∩ S 6= {d− 2}: if and only if i ≥ 2d− g − 3

when t = 3 and {d− 1, d− 2} ∩ S = {d− 2}: for each i ≥ 2d− g − 4

(c) when t = 4 and {d− 1, d− 2, d− 3} ∩ S 6= {d− 3}: if and only if i ≥ 2d− g − 4

when t = 4 and {d− 1, d− 2, d− 3} ∩ S = {d− 3}: for each i ≥ 2d− g − 5

(d) when t ≥ 5: for every i ≥ 2d− g − 4. More precisely:

- when
[
either d− 4 ∈ S, d− `− 4 ∈ S,
or d− 4 /∈ S, d− `− 4 /∈ S and {d− 1, d− 2, d− 3} ∩ S = {d− 2}:

if and only if i ≥ 2d− g − 4.

- for each i ≥ 2d− g − 5 in the other cases.

Before proving the theorems we derive the following consequences.

Corollary 3.3 (1) m ≤ min{c+ c′ − 2− g, 2d− g}, for every non-ordinary semigroup S.

(2) m = min{c+ c′ − 2− g, 2d− g} if and only if either c+ c′ − 2 ≤ 2d, or t = 0.

Proof. (2) Let m = min{c+ c′ − 2− g, 2d− g}: if c+ c′ − 2 > 2d, then m = 2d− g, and so t = 0, by
(3.1.2.a). The other implication follows by (3.1.1) and (3.1.2.a). �

Proposition 3.4 Every non-ordinary acute semigroup satisfies either c+ c′ − 2 ≤ 2d or t = 0.

Proof. In fact if c + c′ − 2 ≥ 2d + 1, and S is acute, one has c′ − 1 > d − ` and c′ − d′ ≥ ` + 1, so
d− ` ≥ d− c′ + d′ + 1 ≥ d′ + 1, so d′ + 1 ≤ d− ` < c′ − 1, then d− ` /∈ S, and t=0. �

Remark 3.5 (1) Let S be a non-ordinary acute semigroup, then the equality m = min{c+ c′ − 2−
g, 2d− g} [1, Th. 6.3] follows from (3.4) and (3.3.2).

(2) Not all numerical semigroups satisfying either c+ c′ − 2 ≤ 2d, or t = 0 are acute.
A counterexample is given by the semigroup S =< 8, 21, 36, 51, 62 > considered in (3.14.B).

(3) Notice that c+ c′−2 < 2d = c+d− `−1 ⇐⇒ c′−1 < d− ` ⇐⇒ c′ ≤ d− ` < d =⇒ d− ` ∈ S,
that is, t > 0. Then, d−` /∈ S =⇒ c+c′−2 ≥ 2d. Further if c+c′−2 = 2d one has d−` = c′−1 /∈ S.
It follows (see the proof of (3.4)):

If S is acute the condition c+ c′ − 2 ≥ 2d is equivalent to d− ` /∈ S.

3.1 Proof of theorems 3.1 and 3.2.

In order to prove Theorem 3.1 and Theorem 3.2 we need some preliminary results.

Lemma 3.6 With Setting 2.1:

(1) If c− 2 ∈ S, then the semigroup S is acute and m = c+ c′ − 2− g.

(2) If S is a symmetric semigroup, then,



(a) d = c− 2, and so S is acute.

(b) c′ = c− e.
(c) If S is non-ordinary : d′ = c′ − 2 ⇐⇒ e+ 1 /∈ S.

(d) c+ c′ − 2 ≤ 2d.

(3) If α ∈ IN such that 1 < α ≤ e, then c− α /∈ H1.

(4) If c− 2 /∈ S, then c− 2 ∈ H2.

(5) If µ < c− 2, then c− 2 ∈ S.

(6) 1 ≤ ` ≤ e− 1.

Proof. The proof is straightforward. �

Lemma 3.7 Let si ∈ S, si ≤ 2c−1. For each s ∈ S consider the set As(si) = {(x, y) ∈ Ni | x ≥ s}
as in (2.1). Then,

(1) A0(si) = Ni.

(2) x 6= y, for every (x, y) ∈ Ac(si).

(3) #Ac(si) = #{y ∈ S | y ≤ si − c}.

(4) Ac+1(si+1) = {(x+ 1, y) | (x, y) ∈ Ac(si)}.

(5) Ac(si+1) =

[
Ac+1(si+1), if si+1 − c /∈ S

Ac+1(si+1) ∪ {(c, si+1 − c)}, if si+1 − c ∈ S.

(6) #Ac(si) = #Ac+1(si+1).

(7) #Ac(si+1) =

[
#Ac(si) if si+1 − c /∈ S

#Ac(si) + 1 if si+1 − c ∈ S.

(8) If d− `− k ∈ S, then (c, d− `− k) ∈ Ac(2d− k + 1).

Proof. (1), (2), (3), (5) are immediate.
(4) If (x, y) ∈ Ac(si) then si ≥ c: hence si+1 = si + 1. Therefore we can define a correspondence

φ : Ac(si) −→ Ac+1(si+1) by

(x, y) 7→ (x+ 1, y).

This map φ is clearly one to one, hence (4) follows.
(6) and (7) follow directly from (4) and (5).
(8) Write 2d− k = d+ c− `− 1− k, then 2d+ 1− k = c+ (d− `− k). This proves (8). �

By using the above lemma we can easily evaluate the set N(si) for every si ≥ 2d+ 1.

Lemma 3.8 Let si ≥ 2d+ 1. Then,
N(si) = {(x, y) ∈ S2 | either (x, y) ∈ Ac(si), or (y, x) ∈ Ac(si)}.

Proof. Since si ≥ 2d + 1, the equality x + y = si, with x < c, (hence x ≤ d, by (2.1)) yields to
y = si − x ≥ 2d+ 1− d = d+ 1. Therefore y ≥ c. �

Proposition 3.9 Assume that S is non-ordinary. Then,

(1) (a) νi+1 ≥ νi, for every i ≥ 2d+ 1− g, equivalently, for every si ≥ 2d+ 1.

(b) νi = 2c− 2g, for c+ d− g ≤ i ≤ 2c− g − 1, equivalently, for c+ d ≤ si ≤ 2c− 1.



(2) If i = 2d− g, i.e. si = 2d, then νi+1 =
[
νi + 1 if d− ` ∈ S
νi − 1 if d− ` /∈ S.

Proof. Part (1.a) follows from (3.8) and (3.7.7).
(1.b) When 2d+ 1 ≤ si ≤ 2c− 1, by (3.7.2) and by (3.8) one has νi = #Ni = 2#Ac(si). In particular,
when c+ d ≤ si ≤ 2c− 1, we have #Ac(si) = c− g by (3.7.3).
(2) Let now si = 2d. Clearly, {(d, d)} ∈ Ni. If (x, y) ∈ Ni, (x, y) 6= (d, d), the same argument as in
the proof of (3.8) shows that either (x, y) ∈ Ac(si) or (y, x) ∈ Ac(si). Then by (3.7.2), (3.7.7) one has
νi = 1 + 2#Ac(si) and

either ν(2d+ 1) = 2#Ac(si) + 2, if d− ` ∈ S,
or ν(2d+ 1) = 2#Ac(si), if d− ` /∈ S. This proves statement (2) . �

Since t = 0 if and only if d− ` /∈ S, we obtain the following corollary.

Corollary 3.10 m = 2d− g if and only if t = 0.

Remark 3.11 If t = 0 then necessarily 2d− g ≤ c+ c′ − 2− g (3.5.3 ) and so the same formula
for acute semigroups (Theorem 2.5) still applies for semigroups with parameter t = 0. This result is
proved independently in [7, Th.3.11].

To investigate the remaining cases, we use different techniques according to c+ c′ − 1 ≤ 2d+ 1,
or c+ c′ − 1 > 2d+ 1.

Lemma 3.12 Assume that S is non-ordinary and that c+ c′ − 1 ≤ 2d+ 1 . Then,

(1) D(si) = ∅ for every si ∈ S such that c+ c′ − 1 ≤ si ≤ 2d+ 1.

(2) D(c+ c′ − 2) = {(c′ − 1, c− 1), (c− 1, c′ − 1)}.

(3) Let c+ c′ − 2 = sj. Then ν(c+ c′ − 2) = νj = j + 1− g + #Dj = j + 3− g.

ν(c+ c′ − 1) = νj+1 = (j + 1) + 1− g = j + 2− g.

Proof. First note that d ≥ 2, since S is non-ordinary and 1 /∈ S. Hence also c′ ≥ 2 and c+ c′ − 2 ≥ c.
(1) By the above observation, if c+ c′ − 1 ≤ si ≤ 2d+ 1, one has

si = c+ k, with c′ − 1 ≤ k ≤ d− `.
Also, c′ ≤ k + 1 ≤ d − ` + 1 ≤ d =⇒ k + 1 ∈ S. Let now (x, y) ∈ Di, so that x + y = si and
(x, y) ∈ H2. Note that x, y ≤ c− 2; indeed if x = c− 1, then y = si − c+ 1 = k + 1 ∈ S. Thus

y = si − x ≥ c+ c′ − 1− (c− 2) = c′ + 1.
Therefore d < y < c i.e., y = d+ q, with 1 ≤ q ≤ ` and so
x = si − d− q = c+ k − d− q = `+ k + 1− q, where 0 ≤ `− q ≤ `− 1, c′ ≤ k + 1 ≤ d− `+ 1.
Then one obtains c′ ≤ x ≤ d: contradiction, since x /∈ S. This proves (1).
(2) Let si = c + c′ − 2, and let, as above, (x, y) ∈ Di. Then x, y ≥ c′ − 1. Indeed x < c′ − 1 would
imply y > c+ c′ − 2− c′ + 1 = c− 1 and so y ∈ S. Further if x > c′ − 1, then x ≥ d+ 1. So

y = c+ c′ − 2− x ≤ c+ c′ − 2− d− 1 ≤ 2d− d− 1 = d− 1, hence y ≤ c′ − 1.
These arguments show that either y = c′ − 1 or x = c′ − 1 and we are done.
(3) Let sj = c+ c′ − 2: by Theorem 2.2 and Lemma 3.12.2 one gets:

ν(c+ c′ − 2) = νj = j + 1− g + #Dj = j + 3− g.
ν(c+ c′ − 1) = νj+1 = (j + 1) + 1− g = j + 2− g. �

Proposition 3.13 Assume that S is non-ordinary and that c+ c′ − 1 ≤ 2d+ 1. Then,

m = c+ c′ − 2− g and νm+1 = νm − 1.



Proof. Let sj = c+ c′ − 2.
Case A: c+ c′− 1 = 2d+ 1. From the equalities in (3.12.3) and from (3.9.1.a), we deduce that m = j.
Case B: c+ c′ − 1 < 2d+ 1. Again by (3.12.2) and (2.2.1) one gets:

ν(c+ c′ + h) = νj+2+h = j + 2 + h+ 1− g = j + 3− g + h, for every h ∈ [0, 2d+ 1− c− c′]
and we are done by (3.9.1.a), and by (i), (ii) above. �

Example 3.14 We show two examples for the cases (A), (B) in the above proof.
Case (A): let S = {0, 6, 8→}, generated by < 6, 8, 9, 10, 11, 13 >. c = 8, d = c′ = 6, d′ = 0, g = 6,

` = 1, d− ` = d− 1 /∈ S, c+ c′ − 1 = 13 = 2d+ 1. This semigroup is acute.
By (3.13), sm = c+ c′ − 2 = 2d = 12. The sequence {νi}i∈IN is: 0 6 8 ... 11 12 = sm 13 14 15 = 2c− 1 16 = 2c →

ν0 ν1 ν2 ... ν5 ν6 = νm ν7 ν8 ν9 ν10 →
1 2 2 ... 2 3 2 4 4 5 →


Case (B): let S = {0, 8, 16, 21, 24, 29, 32, 36, 37, 40, 42, 44, 45, 48, 50, 51, 52, 53, 56 →}, generated by

< 8, 21, 36, 51, 62 >. c = 56, d = 53, c′ = 50, d′ = 48, g = 38, ` = 2, d − ` = 51 ∈ S,
c+ c′ − 1 = 105 < 107 = 2d+ 1. This semigroup is not acute since c′ − d′ = 2 < c− d = 3, and

m = c+ c′ − 2− g = 66. In fact the sequence {νi}i∈IN is: 0 ... 104 = sm 105 106 = 2d 107 108 109 110 111 = 2c− 1 2c →
ν0 ... ν66 ν67 ν68 ν69 ν70 ν71 ν72 ν73 ν74 →
1 ... 31 30 31 32 34 36 36 36 37 →


Proposition 3.13 ensures that in the case c+ c′ − 2 ≤ 2d, the parameter m equals c+ c′ − 2− g. Our
next concern is to find m in the remaining cases.

From now on we always assume that c+ c′ − 2 > 2d.

Proposition 3.15 Assume that c+ c′ − 2 > 2d and that d− ` ∈ S. Let k := 2d− g (sk = 2d). Then
the parameter νk−1 is related to νk as follows:

νk−1 =


νk − 3 if d− 1 /∈ S and d− `− 1 ∈ S (a)
νk − 1 if d− 1 /∈ S and d− `− 1 /∈ S (b)
νk − 1 if d− 1 ∈ S and d− `− 1 ∈ S (c)
νk + 1 if d− 1 ∈ S and d− `− 1 /∈ S (d)

Proof. Since sk−1 = 2d − 1 is odd, clearly (x, y) ∈ Nk−1 if and only if either x > y, or y > x, and
#Nk−1 = 2#{(x, y) ∈ Nk−1 | x > y}. Let x > y, then
either x ≥ c so that (x, y) ∈ Ac(2d− 1) = {(x, y) ∈ S2 | x ≥ c, and x+ y = 2d− 1},

or x = d and y = d− 1 ∈ S. It follows that:

#Nk−1 =

[
2#Ac(2d− 1) if d− 1 /∈ S
2#Ac(2d− 1) + 2 if d− 1 ∈ S.

Now, easily one gets that (x, y) ∈ Nk, with x ≥ y ⇐⇒ either (x, y) = (d, d) or (x, y) ∈ Ac(sk).
Hence recalling that 2d− c = d− `− 1 and the fact that (d, d) ∈ Nk, one obtains (see (3.7.7)):

#Nk =

[
2#Ac(2d− 1) + 1 if d− `− 1 /∈ S
2#Ac(2d− 1) + 3 if d− `− 1 ∈ S.

The claim follows by combining all the possible cases. �

Now we show examples concerning the four cases of the above proposition.

Example 3.16 (1) Let S = {0, 10, 11, 12, 13, 14, 16, 20→} =< 10, 11, 12, 13, 14, 16 >.
Then, c = 20, d = c′ = 16, d′ = 14, g = 13, ` = 3,
d− ` = 13 ∈ S,
d− 1 = 15 /∈ S, d− `− 1 = 12 ∈ S,



d− 2 = 14 ∈ S, d− `− 2 = 11 ∈ S
d− 3 = 13 ∈ S, d− `− 3 = 10 ∈ S
d− 4 = 12 ∈ S, d− `− 4 = 9 /∈ S. Hence t = 4 and {d− 1, d− 2, d− 3} ∩ S 6= {d− 3}.
Moreover c+ c′ − 2 = 34 > 2d = 32. In this case we get

m = 2d− g − 4 = 15, with sm = 28 = 2d− 4. In fact the sequence {νi}i∈IN is: 0 10 ... 27 28 = sm 29 30 31 32 = 2d 33 →
ν0 ν1 ... ν14 ν15 ν16 ν17 ν18 ν19=2d−g ν20 →
1 2 ... 6 5 4 6 6 9 10 →


(2) Let S = {0, 10, 11, 13, 14, 16, 20→}, generated by < 10, 11, 13, 14, 16 >.

So: c = 20, d = c′ = 16, d′ = 14, g = 14, ` = 3, d− ` ∈ S, d− 1 /∈ S, d− `− 1 /∈ S.
d− 1 = 15 /∈ S, d− `− 1 =/∈ S,
d− 2 = 14 ∈ S, d− `− 2 = 11 ∈ S
d− 3 = 13 ∈ S, d− `− 3 = 10 ∈ S
d− 4 = 12 /∈ S, d− `− 4 /∈ S
d − 5 = 11 ∈ S, d − ` − 5 /∈ S. Hence t = 5 and {d − 1, d − 2, d − 3} ∩ S 6= {d − 2}. Moreover
c+ c′ − 2 = 34 > 2d = 32. In this case we get

m = 2d− g − 5 = 13, with sm = 27. In fact the sequence {νi}i∈IN is: 0 10 ... 27 = sm 28 29 30 31 32 = 2d 33 →
ν0 ν1 ... ν13 ν14 ν15 ν16 ν17 ν18=2d−g ν20 →
1 2 ... 6 3 4 6 6 7 8 →


(3) Let S = {0, 10, 11, 12, 13, 15, 16, 20→}, generated by < 10, 11, 12, 13, 15, 16 >. So: c = 20, d = 16,
c′ = 15, d′ = 13, g = 13, ` = 3, d− ` ∈ S, d− 1 ∈ S, d− `− 1 ∈ S, t = 0.
Moreover c+ c′ − 2 = 33 > 2d = 32. In this case we get

m = 2d− g − 4 = 15, with sm = 28. In fact the sequence {νi}i∈IN is 0 10 ... 27 28 = sm 29 30 31 32 = 2d 33 →
ν0 ν1 ... ν14 ν15 ν16 ν17 ν18 ν19=2d−g ν20 →
1 2 ... 6 6 4 5 8 9 10 →


(4) Let S = {0, 10, 11, 13, 15, 16, 20→} =< 10, 11, 12, 13, 15, 16 >. Then,
c = 20, d = 16, c′ = 15, d′ = 13, g = 14, ` = 3, d − ` ∈ S, d − 1 ∈ S, d − ` − 1 /∈ S. Hence
t = 1. Moreover c+ c′ − 2 = 33 > 2d = 32. In fact the sequence {νi}i∈IN is 0 10 ... 30 31 = sm 32 = 2d 33 34 →

ν0 ν1 ... ν16 ν17 ν18=2d−g ν19 ν20 →
1 2 ... 5 8 7 8 8 →


Hence m = 2d− g − 1 = 17, with sm = 31.

By combining Proposition 3.15 and Proposition 3.9 we obtain

Corollary 3.17 Suppose c+ c′ − 2 > 2d. Then,

(1) m = 2d− g − 1 ⇐⇒ t = 1.

(2) m < 2d− g − 1 ⇐⇒ t > 1.

With similar techniques we can go further in the study of the remaining cases.

Proposition 3.18 Assume that c+c′−2 > 2d and that d−` ∈ S. Let k := 2d−g−1 (sk = 2d−1)
u := d−`−2, A := Ac(2d−2) = Ac(sk−1) and A′ := {(x+1, y) | (x, y) ∈ A} = Ac+1(2d−1).



Then νk−1 = ν(2d− 2) is related to νk = ν(2d− 1) as the following scheme shows.

d− 1 d− 2 u | {(x, y) ∈ Nk−1 | x ≥ y} | {(x, y) in Nk | x ≥ y} | νk−1

| | |
× 0 × | {(d− 1, d− 1)} ∪A | {(d, d− 1), (c, u)} ∪A′ | νk − 3
0 0 × | A | {(c, u)} ∪A′ | νk − 2
× 0 0 | {(d− 1, d− 1)} ∪A | {(d, d− 1)} ∪A′ | νk − 1
× × × | {(d, d− 2), (d− 1, d− 1)} ∪A | {(d, d− 1), (c, u)} ∪A′ | νk − 1
0 0 0 | A | A′ | νk

0 × × | {(d, d− 2)} ∪A | {(c, u)} ∪A′ | νk

× × 0 | {(d, d− 2), (d− 1, d− 1)} ∪A | {(d, d− 1)} ∪A′ | νk + 1
0 × 0 | {(d, d− 2)} ∪A | A′ | νk + 2


Here for an integer s we write respectively “× ” if s ∈ S or “ 0 ” if s /∈ S.

Proof. To find the sets Nk and Nk−1, one notes that (x, y) ∈ Nk (respectively Nk−1), with x ≥ y,
implies that either x ∈ {d − 2, d − 1, d}, or (x, y) ∈ Ac(sk) (resp. Ac(sk−1)). Since Ac(2d − 1) = A′

if u /∈ S, and Ac(2d− 1) = A′ ∪ {(c, u)}, if u ∈ S by (3.7), one gets the above scheme. �

From (3.18), (3.9) and (3.17) we deduce the following corollary.

Corollary 3.19 Suppose c+ c′ − 2 > 2d. Then,

(1) m = 2d− g − 2 ⇐⇒ t = 2.

(2) m < 2d− g − 2 ⇐⇒ t > 2.

We can apply the same arguments once more, but we’ll see that new cases arise.

Proposition 3.20 Assume that c+c′−2 > 2d and that d−` ∈ S. Let k := 2d−g−2 (sk = 2d−2),
u := d − ` − 3, A := Ac(2d − 3) = Ac(sk−1), A′ := {(x + 1, y) | (x, y) ∈ A} = Ac+1(2d − 2),

B(2d− 3) := {(x, y) ∈ Nk−1 | x ≥ y} \A, B′(2d− 2) := {(x, y) ∈ Nk | x ≥ y} \A′.
Then the parameters νk−1 = ν(2d− 3) and νk = ν(2d− 2) are related as follows:

d− 1 d− 2 d− 3 u B(2d− 3) B′(2d− 2) νk−1

0 × 0 × {(d, d− 2), (c, u)} νk − 4
× 0 0 × {(d− 1, d− 1), (c, u)} νk − 3
× × 0 × {(d− 1, d− 2)} {(d, d− 2), (d− 1, d− 1), (c, u)} νk − 3
0 × 0 0 {(d, d− 2)} νk − 2
0 0 0 × {(c, u)} νk − 2
0 × × × {(d, d− 3)} {(d, d− 2), (c, u)} νk − 2
× 0 × × {(d, d− 3)} {(d− 1, d− 1), (c, u)} νk − 1
× × × × {(d, d− 3), (d− 1, d− 2)} {(d, d− 2), (d− 1, d− 1), (c, u)} νk − 1
× 0 0 0 {(d− 1, d− 1)} νk − 1
× × 0 0 {(d− 1, d− 2)} {(d, d− 2), (d− 1, d− 1)} νk − 1
0 0 0 0 νk

0 0 × × {(d, d− 3)} {(c, u)} νk

0 × × 0 {(d, d− 3)} {(d, d− 2)} νk (a)
× × × 0 {(d, d− 3), (d− 1, d− 2)} {(d, d− 2), (d− 1, d− 1)} νk + 1
× 0 × 0 {(d, d− 3)} {(d− 1, d− 1)} νk + 1
0 0 × 0 {(d, d− 3)} νk + 2


Here for an integer s we write respectively “× ” if s ∈ S, “0” if s /∈ S.

From (3.20), (3.9), (3.17 and(3.19.2)) we deduce the following corollary.



Corollary 3.21 Suppose c+ c′ − 2 > 2d. Then,

(1) m = 2d− g − 3 ⇐⇒ t = 3 and {d− 1, d− 2} ∩ S 6= {d− 2}.

(2) m < 2d− g − 3 if t > 3, or t = 3 and {d− 1, d− 2} ∩ S = {d− 2}.

To study the case t = 4, by using the same tools as in the previous cases we obtain a new scheme
with sk = 2d− 3 and sk−1 = 2d− 4. We omit some detail, but the result is the following:

(4)



d− 1 d− 2 d− 3 d− 4 d− `− 4 | νk−1

0 0 × 0 × | νk − 4
0 × × 0 × | νk − 3
× × 0 0 × | νk − 3
× × × 0 × | νk − 3
0 0 × 0 0 | νk − 2
× 0 0 0 × | νk − 2
0 0 0 0 × | νk − 2
0 0 × × × | νk − 2
× 0 × 0 × | νk − 2
0 × × 0 0 | νk − 1
0 × × × × | νk − 1
× × 0 × × | νk − 1
× × × × × | νk − 1
0 × 0 0 × | νk − 1
× × 0 0 0 | νk − 1
× × × 0 0 | νk − 1
× 0 0 0 0 | νk

0 0 0 0 0 | νk

× 0 0 × × | νk

× 0 × × × | νk

0 0 0 × × | νk

× 0 × 0 0 | νk

0 × 0 × × | νk + 1 (b)
0 × 0 0 0 | νk + 1 (c)
0 0 × × 0 | νk (a)
0 × × × 0 | νk + 1
× × 0 × 0 | νk + 1
× × × × 0 | νk + 1
× 0 0 × 0 | νk + 2
× 0 × × 0 | νk + 2
0 0 0 × 0 | νk + 2
0 × 0 × 0 | νk + 3


From this last scheme we deduce the following corollary.

Corollary 3.22 (1) If t = 4, then m ≤ 2d− g − 4 and

m = 2d− g − 4 if and only if {d− 1, d− 2, d− 3} ∩ S 6= {d− 3}.

(2) If t > 4, then m ≤ 2d− g − 4 and

m = 2d− g − 4 if and only if

{d− 1, d− 2, d− 3} ∩ S = {d− 2} and
[
either d− 4 ∈ S, d− `− 4 ∈ S,
or d− 4 /∈ S, d− `− 4 /∈ S.



By summarizing all the previous results we obtain Theorem 3.1 and Theorem 3.2.

Cases (a), (b), (c) in the above table (4) show that when t is greater than or equal to 4 we cannot
always predict the value of m: see also the examples below.

Example 3.23 To evaluate m in the following examples we need (3.9.1)
(1) Conditions (t = 4, m = 2d− g − 4) of (3.22.1) are satisfied in Example 3.16.1.
(2) The conditions of case (a) in table (4) and (t = 4, m < 2d − g − 4) of (3.22.1) are satisfied for
instance by S = {0, 10, 12, 13, 16, 20→} =< 10, 12, 13, 16, 21, 27 >.
We have: c = 20, d = c′ = 16, d′ = 13, g = 15, ` = 3,
d− ` = 13 ∈ S,
d− 1 = 15 /∈ S, d− `− 1 = 12 ∈ S,
d− 2 = 14 /∈ S, d− `− 2 = 11 /∈ S
d− 3 = 13 ∈ S, d− `− 3 = 10 ∈ S
d− 4 = 12 ∈ S, d− `− 4 = 9 /∈ S. Hence t = 4 and {d− 1, d− 2, d− 3} ∩ S = {d− 3}.
Moreover c+ c′ − 2 = 34 > 2d = 32.
In this case we get m = 2d− g − 6 = 11, with sm = 26 < 2d− 4. In fact the sequence {νi}i∈IN is: 0 10 ... 26 = sm 27 28 29 30 31 32 = 2d 33 →

ν0 ν1 ... ν11 = νm ν12 ν13 ν14 ν15 ν16 ν17 ν18 →
1 2 ... 5 2 4 4 4 4 7 8 →


(3) The conditions of case (b) in table (4) and (t > 4, m = 2d − g − 4) of (3.22.2) are satisfied for

instance by S = {0, 10, 11, 13, 15, 17, 20→} =< 10, 11, 13, 15, 17, 29 >.
c = 20, d = c′ = 17, d′ = 15, g = 14, ` = 2,
d− 1 = 16 /∈ S, d− `− 1 = 14 /∈ S,
d− 2 = d− ` = 15 ∈ S, d− `− 2 = 13 ∈ S
d− 3 = 14 /∈ S,
d− 4 = 13 ∈ S, d− `− 4 = 11 ∈ S
d− 5 = 12 /∈ S
d− 6 = 11 ∈ S, d− `− 6 = 9 /∈ S. Hence t = 6 and {d− 1, d− 2, d− 3} ∩ S = {d− 2}.
Moreover c+ c′ − 2 = 35 > 2d = 34.
In this case we get m = 2d− g − 4 = 16, with sm = 30 = 2d− 4. In fact the sequence {νi}i∈IN is: 0 10 ... 30 = sm 31 32 33 34 = 2d 35 →

ν0 ν1 ... ν16 = νm ν17 ν18 ν18 ν20 ν21 →
1 2 ... 7 6 8 8 9 10 →


(4) The conditions of case (c) in table (4) and (t > 4, m = 2d − g − 4) of (3.22.2) are satisfied for

instance by S = {0, 13, 15, 18, 20, 26→} =< 13, 15, 18, 20, 26, 27, 29, 32, 34, 37 >.
c = 26, d = c′ = 20, d′ = 18, g = 21, ` = 5,
d− 1 = 19 /∈ S, d− `− 1 = 14 /∈ S,
d− 2 = 18 ∈ S, d− `− 2 = 13 ∈ S,
d− 3 = 17 /∈ S,
d− 4 = 16 /∈ S, d− `− 4 = 11 /∈ S,
d− 5 = d− ` = 15 ∈ S,
d− 6 = 14 /∈ S,
d− 7 = 13 ∈ S, d− `− 7 = 8 /∈ S. Hence t = 7 and {d− 1, d− 2, d− 3} ∩ S = {d− 2}.
Moreover c+ c′ − 2 = 35 > 2d = 34.
In this case we get m = 2d− g − 4 = 15, with sm = 36 = 2d− 4. In fact the sequence {νi}i∈IN is: 0 13 ... 35 36 = sm 37 38 39 40 = 2d 41 →

ν0 ν1 ... ν14 ν15 = νm ν16 ν17 ν18 ν19 ν20 →
1 2 ... 4 3 2 4 4 5 6 →


(5) Let ` > 1 and let S` = {0, 2`+ 1, 3`+ 1, 4`+ 2,→}.

We have c = 4`+2, c′ = d = 3`+1, d′ = 2`+1, g = 4`−1. Clearly t = `, c+c′−2 = 7`+1 > 2d =
6`+ 2 and the sequence {νi}i∈IN is:



 0 2`+ 1 ... 5`+ 2 = s2d−t 5`+ 3 ... 6`+ 1 2d 6`+ 3 →
ν0 ν1 ... ν2d−t−g νm+1 ... ν2d−1 ν2d ν2d+1 →
1 2 ... 4 2 2 2 3 4 →


Hence we get m = 2d− g − t.

Remark 3.24 (1) Examples (3) and (4) in (3.23) show that the formula found for t ≤ 4 : m =
2d − g − i if and only if t = i and {d − 1, ..., d − i + 1} ∩ S 6= {d − i + 1} doesn’t hold in general for
t > 4. However this formula is true for every t > 1 in the family S` of example (3.23.5).

(2) Examples (4) and (5) in (3.23) show that the inequality m ≤ 2d − g − 4 when t > 4 in
Corollary 3.22.2 can be strict or not.

4 Classes of examples.

In this section we show some classes of acute semigroups, that are new with respect to the ones studied
in [1]. For such semigroups we find also the value of the parameter m as in (2.3).

4.1 Semigroups generated by arithmetic sequences.

Semigroups generated by arithmetic or almost arithmetic sequences often arise among the Weierstrass
semigroups (see next Example 4.3). We shall prove that all semigroups generated by an arithmetic
sequence are acute. First we recall some definitions and fix some new notations.

Definition 4.1 We say that the semigroup S as in 2.1 is generated by an arithmetic sequence (AS for
brevity) if

S =< m0,m1, ...,mp+1 >, where m0 ≥ 2, mi = m0 + ρ i, ∀ i = 1, ..., p+ 1, and GCD(ρ,m0) = 1.

When ρ = 1, we say that S is generated by an interval (see e.g. [5]).
We shall denote by q, r the integers such that m0 − 2 = q(p+ 1) + r, (0 ≤ r ≤ p).

Definition 4.2 We say that a semigroup S is generated by an almost arithmetic sequence (AAS for
brevity) if

S =< m0,m1, ...,mp+1 , n > with m0 ≥ 2, mi = m0+ρ i, ∀ i = 1, ..., p+1, and GCD(ρ,m0, n) = 1.

Some semigroups arising from AG codes are AS or AAS, as shown in the following example.

Example 4.3 (1) S1 =< 3, 5, 7 > (AS) is the Weierstrass semigroup at P0 = (0 : 0 : 1) of the
Klein quartic ⊆ IP 2 defined by the equation X3

0X1 + X3
1X2 + X0X

3
2 = 0, over the field IF having

cardinality q with gcd(q, 7) = 1 [6, Example 2.14].
(2) S2 =< 4, 5 > (AS), S3 =< 4, 7, 10, 13 > (AS), S` = {0, 6→} \ {`}, for each 6 ≤ ` ≤ 11

(AS if and only if ` = 6 or ` = 11, AAS if and only if ` = 10),
are the possible Weierstrass semigroups for a plane non singular projective quintic [8, Section 3].
(3) If S has g gaps, it is easy to see that:

If 2 ∈ S, then S =< 2, 2g + 1 > (AS) (hyperelliptic semigroup, see e.g. [2, Example 3 ]).
If 2 /∈ S and 2 ≤ g < 4, then S is AS or AAS.
If 2 /∈ S and g = 4 then S is AS or AAS, if and only if S 6= {0, 4, 6→}(=< 4, 6, 7, 9 >).

In fact all the possible semigroups are:
When g = 2: < 3, 4, 5 >;
When g = 3: < 3, 4 >, < 3, 5, 7 >, < 4, 5, 6, 7 >;
When g = 4: < 3, 5 >, < 3, 7, 8 > (AAS), < 4, 6, 7, 9 >, < 5, 6, 7, 8, 9 >, < 4, 6, 7 > (AAS).

We recall from [10] the following facts which hold for AS semigroups.

Proposition 4.4 [10, Prop. 2.5.2-3 and Lemma 2.6]. Assume S is generated by an arithmetic se-
quence as in (4.1) and let H2 be the set of gaps of the second type as in (2.1). Then,



(1) The conductor can be written as c = (m0 − 1)(ρ+ q) + q + 1 = mr+1 + qmp+1 −m0 + 1.

(2) S is symmetric if and only if r = 0.

(3) If r ≥ 1, the gaps of the second type are {mi + qmp+1 −m0 − jmp+1, 1 ≤ i ≤ r, 0 ≤ j ≤ q} =
{mi + qmp+1 −m0, ...,mi + (q − j)mp+1 −m0, ...,mi +mp+1 −m0, 1 ≤ i ≤ r, 0 ≤ j ≤ q}.

and the greatest gap in H2 is µ = mr + qmp+1 −m0 = c− ρ− 1.

Lemma 4.5 Let S be an AS semigroup. Suppose r ≥ 1 and let µ be as in (4.4.3) above. Then,
µ = c− 2 ⇐⇒ ρ = 1, i.e. S is generated by an interval.

Proof. It follows by (4.4.3). �

Lemma 4.6 Let S be an AS semigroup. Assume ρ = 1. We have:

c = (q + 1)m0, d = qmp+1 = c− r − 2, c′ = qm0 = c−m0, d′ = (q − 1)mp+1.

(The equality c = (q + 1)m0, is proved in [5, Corollary 5])

Proof. If ρ = 1, since m0 − 2 = q(p+ 1) + r (4.1), using (4.4.1) we get:
c = mr+1 + qmp+1 −m0 + 1 = m0 + r + 1 + q(m0 + p + 1) −m0 + 1 = q(p + 1) + r + qm0 + 2 =
m0− 2 + qm0 + 2 = (q+ 1)m0. Moreover, since S =

⋃
k≥0{km0, km0 + 1, kmp+1} (see e.g [1, Lemma

4.2]), one has d = qmp+1, so c− d = qm0 +m0 − qm0 − q(p+ 1) = r + 2, and we can easily prove
the other statements. �

Lemma 4.7 Let S be an AS semigroup and let H2 the set of gaps of the second kind of S. Assume
ρ ≥ 2.

(1) If σ ∈ IN, 1 ≤ σ ≤ ρ, then c− σ /∈ H2.

(2) d = c− 2.

(3) c′ =

 c−m0 if r = 0
c−m0 if r ≥ 1 and ρ > m0

c− ρ if r ≥ 1 and ρ < m0.

Proof. (1) If r = 0, then H2 = ∅ by (4.4.2) and (2.1). When r ≥ 1, let µ be as in (4.4.3), and let
1 ≤ σ ≤ ρ. Then µ = c− (ρ+ 1) < c− σ and it is enough to recall that µ is the greatest gap in H2.
(2). It follows by (4.5) and (3.6.5).
(3). If r = 0, then R is a symmetric semigroup (4.4.2), hence c′ = c−m0, by (3.6.2).
Assume r ≥ 1. If ρ < m0, the interval [c− ρ, c− 2] is contained in S. Indeed, for s ∈ [c− ρ, c− 2], one
has s = c−α with 2 ≤ α ≤ ρ < m0, and so c−α /∈ H, by (3.6.3) and by (1). Since c− ρ− 1 = µ /∈ S
(4.4.3), we obtain that c′ = c− ρ.
If ρ > m0, then [c − m0, c − 2] ⊆ S. In fact, if s ∈ [c − m0, c − 2], one has : s = c − β, with
2 ≤ β ≤ m0 < ρ, and so s /∈ H by (3.6.3) and by (1). Since c − m0 − 1 /∈ S (it is in H1), we get
c′ = c−m0. �

Theorem 4.8 Let S ⊆ IN be a semigroup generated by an arithmetic sequence.

(1) S is an acute semigroup. In particular, if ρ ≥ 2, then d = c− 2.

(2) Let m be as in (2.3). Then:

 m = c+ c′ − 2− g if ρ ≥ 2
m = c+ c′ − 2− g if ρ = 1 and 0 ≤ r ≤

[
m0−2

2

]
m = 2d− g otherwise.



Proof. (1) S is acute by (4.4.2) and (3.6.2), if r = 0; by [1, Prop. 5.9.4], if r ≥ 1 and ρ = 1 ; by
(4.7.2) and (3.6.1), if r ≥ 1 and ρ ≥ 2.
(2). If (ρ = 1 and r = 0), or ρ ≥ 2, then d = c−2 by (4.6) and (4.7.2); and so c+c′−2 ≤ c+d−2 = 2d.
If ρ = 1 and r ≥ 1, then c′ = c − m0, d = c − r − 2 (4.6); so c + c′ − 2 = 2c − m0 − 2, and
c+ c′ − 2 ≤ 2d = 2c− 2r − 4 ⇐⇒ m0 ≥ 2r + 2 ⇐⇒ r ≤

[
m0−2

2

]
. �

We remark that there are semigroups generated by an almost arithmetic sequence,which are not
acute, as shown in the following example.

Example 4.9 Let S = {0, 9, 16, 17, 18, 23, 25, 26, 27, 30, 32, 33, 34, 35, 36, 39→} =< 9, 16, 17, 23, 30 >.
Then c = 39, d = 36, c′ = 32, d′ = 30. Hence: c− d = 3 > c′ − d′ = 2.

In the next subsection we shall prove that every semigroup generated by 3 elements (hence gener-
ated by an almost arithmetic sequence) is acute.

4.2 Semigroups of Cohen Macaulay type 2 or 3.

We conclude the section by proving that a semigroup S as in (2.1) with τ = 2, where τ is the CM-type
(see 2.1), is acute. In particular all the semigroups generated by three elements are acute. We give
also partial answers if τ = 3. We start with some preliminary lemmas.

Remark 4.10 (1) d ≥ c′ ≥ c− e.

(2) Every gap σ ≥ c− e belongs to (S(1) \ S).

(3) {d+ 1, ..., d+ `} = {c− `, ..., c− 1} ⊆ S(1) \ S, and ` ≤ τ .

(4) {c− e− `, ..., c− e− 1} ⊆ IN \ S.

Proof. (1). Observe that c− 1 /∈ S =⇒ c− 1− e /∈ S, then(1) is clear since c′− 1 /∈ S and [c′, d] ⊆ S.
(2). For any gap σ ≥ c− e, we immediately get that σ+ s ≥ c for all s ∈ S \ {0}, hence σ ∈ S(1) \S.
(3). It follows from (2), since d ≥ c− e, by (1).
(4). Immediate, since c− e− `+ i+ e /∈ S, for every i, 0 ≤ i ≤ `− 1.

Lemma 4.11 The following hold:

(1) d ≥ c− 1− τ .

(2) If d = c− 1− τ then c′ = c− e.

(3) If either c′ = c− e or c′ = c− e+ 1, then S is acute.

Proof. (1). Since ` ≤ τ by (4.10.3), we obtain d = c− `− 1 ≥ c− τ − 1, as desired.
(2). Note that d = c− 1− τ =⇒ [d+ 1, ..., d+ τ ] = S(1) \S, by (4.10.3); on the other hand we cannot
have other gaps greater than c− e by (4.10.2), hence c′ ≤ c− e and the result follows by (4.10.1).
(3). When c′ = c− e, from (4.10.4) we get d′ ≤ c− e− `− 1. Hence c′ − d′ ≥ `+ 1 = c− d and
this means that S is acute (see 2.1).
When c′ = c− e+ 1, by definition c− e is a gap of S; moreover {c− e− `, ..., c− e− 1} are gaps
by (4.10.4), hence d′ ≤ c− e− `− 1 and we conclude the proof. �.

Remark 4.12 There are acute semigroups with c′ /∈ {c− e, c− e+ 1}. For example, let
S =< 7, 11, 15 >. Then S is acute with c′ = 35, c− e = 32.

Proposition 4.13 Let S be a non-ordinary semigroup.

(1) If τ = 2, then S is acute and either d = c− 2, or d = c− 3.

Further, if d = c− 3 and e = 3, then c+ c′ − 2 = 2d+ 1, otherwise c+ c′ − 2 ≤ 2d.

(2) If S is generated by 3 elements, then τ ≤ 2 and S is acute.



Proof. (1) From (4.11.1) we deduce that either d = c− 2, or d = c− 3. In the first case S is obviously
acute (3.6.1) and c+ c′ − 2 ≤ c+ d− 2 = 2d.
Let d = c − 3. First note that e ≥ 3, otherwise d = c − 2. Then deduce that S is acute by (4.11.2)
and (4.11.3). When e = 3, one has c′ = d = c− 3, so c+ c′ − 2 = 2c− 5 = 2d+ 1.
If e ≥ 4 one has c′ ≤ d− 1 by (4.11.2), so c+ c′ − 2 ≤ c+ d− 3 = 2d.
(2) When S is minimally generated by 3 elements, then S is generated by an almost arithmetic
sequence and τ ≤ 2, ( see [11, Props. 3.3, 4.6, 5.6]). So the result follows by (1) if τ = 2 and by
(3.6.2) if τ = 1 (since τ = 1 means that S is symmetric). �

Corollary 4.14 Let τ = 2. Then,
m = 2d− g if d = c− 3 and e = 3, m = c+ c′ − 2− g otherwise.

Proof. Since S is acute, by (4.13.1), applying (2.5) we get m = min{c+ c′ − 2− g, 2d− g}. �

Remark 4.15 If τ = 3, in general S is not acute. For example: S =< 7, 10, 13, 15 >. Here τ =
3, c = 20, d = 17, c′ = d, d′ = 15. In case τ = 3, we can however prove the following facts.

Proposition 4.16 Let S be as in (4.13) and let τ = 3. Then,
(1) c− 4 ≤ d ≤ c− 2.

(2) If d = c− 2, then S is acute and m = c+ c′ − 2− g.

(3) If d = c− 4, then S is acute and m =
[
c+ c′ − 2− g ⇐⇒ e ≥ 6

2d− g ⇐⇒ e ≤ 5.

(4) If d = c− 3, then S is acute if and only if d′ ≤ c′ − 3.

Proof. (1) follows directly from (4.11.1).
(2) If d = c− 2 see (3.6.1).
(3) If d = c− 4 then d = c− 1− τ and so S is acute and c′ = c− e by (4.11). Moreover

c+ c′ − 2 = 2c− e− 2 = 2d− e+ 6, and we are done.
(4) When d = c− 3 the required inequality holds if and only if S is acute, by definition. �
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