On the order bound of one-point algebraic geometry codes.

Anna Oneto and Grazia Tamone

¹ **Abstract.** Let $S = \{s_i\}_{i \in \mathbb{N}} \subseteq \mathbb{N}$ be a numerical semigroup. For each $i \in \mathbb{N}$, let $\nu(s_i)$ denote the number of pairs $(s_i - s_j, s_j) \in S^2$: it is well-known that there exists an integer m such that the sequence $\{\nu(s_i)\}_{i \in \mathbb{N}}$ is non-decreasing for i > m. The problem of finding m is solved only in special cases. By way of a suitable parameter t, we improve the known bounds for m and in several cases we determine m explicitly. In particular we give the value of m when the Cohen-Macaulay type of the semigroup is three or when the multiplicity is lower or equal to six. When S is the Weierstrass semigroup of a family $\{C_i\}_{i \in \mathbb{N}}$ of one-point algebraic geometry codes, these results give better estimates for the order bound on the minimum distance of the codes $\{C_i\}$.

Index Terms. Numerical semigroup, Weierstrass semigroup, algebraic geometry code, order bound on the minimum distance.

1 Introduction

Let $S \subseteq \mathbb{N}$ be a numerical semigroup, $S = \{s_i\}_{i \in \mathbb{N}}$ and let c, c', d, d' denote respectively the conductor, the subconductor, the dominant of the semigroup and the greatest element in S preceding c' (when d > 0), as in Setting 2.1. Further let ℓ be the number of gaps of S greater than d and g the genus of S. For $s_i \in S$, call $\nu(s_i)$ the number of pairs $(s_i - s_j, s_j) \in S^2$: when S is the Weierstrass semigroup of a family $\{C_i\}_{i \in \mathbb{N}}$ of one-point algebraic geometry (AG) codes (see, e.g. [3]), Feng and Rao proved that the minimum distance of the code C_i can be bounded by the so called order bound, $d_{ORD}(C_i) := \min\{\nu(s_j): j \ge i+1\}$ (see [2]). It is well-known that the sequence $\{\nu(s_i)\}_{i\in\mathbb{N}}$ is non-decreasing from a certain i (see[5]); then it is important to find the integer m determining the largest point at which the sequence decreases, that is, $d_{ORD}(C_i) = \nu(s_{i+1})$ for $i \ge m$. A first approach to this problem can be found in [1], where the author gave the value of m for acute semigroups recalled in (2.1). In [4] (see Theorem2.8 below), we improved this result: by introducing the new parameter

 $t:=\min\{j\in\mathbb{N}\ such that\ d-j\in S,\ d-\ell-j\notin S\},$

we deeply studied m for $t \leq 4$. In particular we characterized the semigroups

 $^{^{1}}$ The first author is with Ditpern, Università di Genova, P. le Kennedy,

Pad. D
 -16129 Genova (Italy) $({\it E-mail:}\ {\rm oneto@dimet.unige.it}).$ The second author is with Dima, Università di Genova,

Via Dodecaneso 35 - 16146 Genova (Italy) (E-mail: tamone@dima.unige.it).

having m = 2d - t - g; in addition we proved that in all the remaining cases $m \leq 2d - 4 - g$.

In the present paper we further develope this topic. In Sections 2 and 3, after fixing the setting and notation, we recall some known results and prove some technical statements. In Section 4 we give exact evaluations or better bounds for m in the unsolved cases. In fact we prove the following facts:

- when $d' \le d - t \le d$, then $s_m = 2d - t$ (4.1) and (4.2).

- when $2d' - d \le d - t < d'$, then $s_m \le 2d - t$;

further we give necessary and sufficient conditions on S in order to have $s_m = 2d - t$ or $2d' \le s_m < 2d - t$ (4.4.1) and (4.4.2).

- when d - t < 2d' - d, then $s_m \leq 2d'$;

in addition we find the necessary and sufficient conditions on S for having $s_m = 2d'$ (4.4.3). We also calculate s_m under particular assumptions (4.6.1).

Finally, in Section 5 we study completely the case $\ell = 2$: we evaluate m in function of the invariant t (see Theorem 5.5) and, as a corollary, we determine m for semigroups of Cohen-Macaulay type three (see Corollary 5.9) as well as for semigroups with multiplicity ≤ 6 (see Corollary 5.6).

2 Preliminaries

We begin by giving the setting of the paper.

Setting 2.1 In all the article we shall use the following notation. Let \mathbb{N} denote the set of all nonnegative integers. A numerical semigroup is a subset S of \mathbb{N} containing 0, closed under summation and with finite complement in \mathbb{N} . We denote the elements of S by $\{s_i\}_{i \in \mathbb{N}}$, with $s_0 = 0 < s_1 < \ldots < s_i < s_{i+1} \ldots$. We set $S(1) := \{b \in \mathbb{N} \mid b + (S \setminus \{0\}) \subseteq S\}$

We list below the invariants related to a semigroup S we shall use in the sequel.

- $c := \min \{r \in S \mid r + \mathbb{N} \subseteq S\}, \text{ the conductor of } S$
- d := the greatest element in S preceding c, the dominant of S
- $c' := max\{s_i \in S \mid s_i \leq d \text{ and } s_i 1 \notin S\}$, the subconductor of S
- d' := the greatest element in S preceding c', when d > 0
- $\ell := c 1 d$, the number of gaps of S greater than d
- $g := \#(\mathbb{N} \setminus S)$, the genus of S (= the number of gaps of S)
- $\tau := \#(S(1) \setminus S)$, the Cohen-Macaulay type of S
- $e := s_1$, the multiplicity of S.

We shall always assume e > 1, so that $S \neq \mathbb{N}$. With this notation the semigroup has the following shape (where "*" denote gaps and " \leftrightarrow " intervals without any gap):

$$S = \{0, * \ldots *, e, \ldots, d', * \ldots *, c' \longleftrightarrow d, * \ldots *, c \to \}.$$

Recall also that a semigroup S is called

- ordinary if $S = \{0\} \cup \{n \in \mathbb{N}, n \ge c\}$ [1, Def. 5.1];
- *acute* if either S is ordinary, or S is non-ordinary and c, d, c', d' $c-d \le c'-d'$ [1, Def. 5.6.]. satisfy

According to [3] and [1], for $s_i \in S$ we shall denote

- $\begin{array}{lll} N(s_i) & := & \{(s_j, s_k) \in S^2 \mid s_i = s_j + s_k\} = \{(s_i s_j, \ s_j) \in S^2\} \\ \nu(s_i) & := & \#N(s_i), \ \text{the cardinality of } N(s_i) \end{array}$
- $d_{ORD}(i) := \min\{\nu(s_i) \mid j > i\}, \text{ the order bound.}$

Now we recall some definition and former results for completeness.

Definition 2.2 We define the parameters m and t as follows $m := \min\{j \in \mathbb{N} \text{ such that the sequence } \{\nu(s_i)\}_{i \in \mathbb{N}} \text{ is non-decreasing for } i > j\}$ $t := \min\{j \in \mathbb{N} \text{ such that } d-j \in S \text{ and } d-\ell-j \notin S\}.$

Theorem 2.3 Let S be as in Setting 2.1, and let $i \in \mathbb{N}$. Then

- (1) $\nu(s_i) = i + 1 g$, for every $s_i \ge 2c 1$. ([5, Th. 3.8])
- (2) $\nu(s_{i+1}) \ge \nu(s_i)$, for every $s_i \ge 2d + 1$. [4, Prop. 3.9.1]
- (3) If S is an ordinary semigroup, then m = 0. ([1, Th. 7.3])
- (4) If S is an acute semigroup then $c+c'-2 \leq 2d$ or t=0. ([4, Prop. 3.4]).

Remark 2.4 (1). Observe that for each $s_i \ge c$, one has $i = s_i - g$; this equality is no more true if $s_i < c$, hence to simplify the notations our statements shall often deal with s_m instead of m.

(2). Theorem 2.3 implies that $0 < s_m \leq 2d$ for every non-ordinary semigroup. Recalling the definition of $d_{ORD}(i)$ above, one has:

 $d_{ORD}(i) = \nu(s_{i+1}), \quad for \ every \ i \ge m.$

The meaning of t will be clear in next Theorem 2.8 where we gather the known results on this argument (see[4, Th. 3.1]). We state beforehand a proposition which allows to re-write in a better way the above cited Theorem 3.1 of [4]. In particular we show when $d - \ell - t$ attains the maximal value c' - 1 (it is clear that $d - \ell - t \leq c' - 1$ since $d - \ell - t \notin S$, by definition).

Proposition 2.5 The following conditions are equivalent:

- (1) $c + c' 2 \le 2d$.
- (2) $d \ell t = c' 1$.
- (3) c + c' 2 = 2d t.

If these conditions are satisfied then $c' \leq d - t \leq d$.

Proof. (1) \Longrightarrow (2), Let t' := 2d - (c + c' - 2), $(t' \ge 0$ by assumption). Hence $d - \ell - c' + 1 = t'$; and so $d \ge d - t' = c' + \ell - 1 \ge c'$. Then $d - t' \in S$. Moreover $d - \ell - t' = c' - 1 \notin S$, hence $t' \ge t$ (2.2). If t' > t, one has $d - \ell - t > d - \ell - t' = c' - 1$, then $d - \ell - t > d$, impossible. It follows t' = t, i.e. $d - \ell - t = c' - 1$.

(2) \implies 1). If (2) holds, since $c = d + \ell + 1$, then $c + c' - 2 - 2d = d + \ell + 1 + d - \ell - t - 1 - 2d = -t \le 0$.

(3) \iff (2) is obvious recalling that $c = d + \ell + 1$.

Finally, if (1),(2),(3) hold, then $d-t = c' + \ell - 1$, and so $c' \leq d-t \leq d$.

Example 2.6 The vice-versa of last statement in (2.5) doesn't hold in general: in the following semigroup we have $c' \leq d - t \leq d$, but c + c' - 2 > 2d. $S = \{0, 25_e, 26, 27, 28, 29_{d'}, 32_{c'}, 33, 34, 35, 36, 37, 38_d, 48_c \rightarrow \}$. Here: $\ell = 9, d - t = 33, t = 5, c + c' - 2 = 78 > 2d = 76$. (Further $s_m = 71 = 2d - t$ according to next Theorem 4.1).

The following lemma gives some relations on the elements of S and shows that, under suitable assumptions, certain elements can be greater than the conductor.

Lemma 2.7 Let S be as in (2.1) and let $s \in S$. The following facts hold.

- (1) $d-c' \le e-\ell-1, \ c-c' \le e, \ c'-d' \le e, \ \ell \le e-1.$
- (2) $c+c'-2 > 2d \iff d-c' \leq \ell-2.$
- (3) Let c + c' 2 > 2d. We have: $d c' \le e 3$ and if S is non-acute, then:
 - (a) $2d' \ge c$.
 - (b) $d t < d' \Longrightarrow 2d' \ell \ge c.$
- (4) (c) $s+1-c = s-\ell d$.
 - (d) If $d-t < s \le d$, then: $s \ell \in S$.
 - (e) If $s d \in S$ and $d t < s d \le d$, then $s \ge c$ and $s + 1 c \in S$.

(5) Assume S non-ordinary, then:

- (f) $2c' \ge c$ and either d' = 0 (i.e. c' = e) and the equality holds (also, S is acute), or d' > 0 and $2c' \ge c + 2$.
- $(g) \ d-t \ge e.$

Proof. (1) We have $d - c' \leq e - 1$, otherwise $d - c' \geq e$ would imply c' = c; consequently $c' + e \geq c$ since $c' + e \in S$. Now to get the first inequality, write $c' + e \geq d + \ell + 1$. Further $c' - d' \leq e$, otherwise d' < d' + e < c', with $d' + e \in S$, impossible by definition of d'.

Finally $\ell < e$ because $d + \ell = c - 1$ and $d + e \ge c$ (in fact $d + e \in S$).

(2) follows from (1), by substituting $c = d + \ell + 1$.

(3). When c + c' - 2 > 2d, by (2), (1) we have $d - c' \le \ell - 2$, $\ell \le e - 1$, hence $d - c' \le e - 3$.

(a). Since $c' - d' \leq e$, by (1), and $d - c' \leq e - 3$, as just proved, we get: (*) $d - d' \le 2e - 3.$

Now suppose S is non-acute. Note that obviously one has

either d' = 0, or $c' \le 2d' \le d$, or $2d' \ge c$.

If d' = 0, then c' = e and so S is acute, (because $\ell \leq e - 1$, by (1)) against the assumption. If the second case holds, let d' = pe + h, $p \ge 1$, $0 \le h < e$. By (*) we have: $pe+h = 2d'-d' \le d-d' \le 2e-3$. Then p = 1 and by (1) it follows that $c' \le 2d' = 2e + 2h \le d < c \le c' + e,$

 $e \geq c - c' = d + \ell + 1 - c' \geq \ell + 1 + 2e + 2h - c'.$ therefore

From this last chain and the assumption S non-acute we obtain a contradiction: $\left\{\begin{array}{l} e-h-(2e-c')\geq\ell+1+h\\ e-h-(2e-c')=c'-d'\leq\ell. \end{array}\right.$

It follows that $2d' \ge c$.

(b). When d - t < d', we have $d' - \ell \in S$, by definition of t (2.2). Thus, $2d' - \ell = d' + (d' - \ell) \in S$; further by (a), we have $2d' \ge c$ and so $2d' - \ell \ge c$ $c - \ell = d + 1$. It follows $2d' - \ell \ge c$.

(4). (c), (d) are clear by the equality $c = d + \ell + 1$ and by the definition of t. To see (e): by (c), $s + 1 - c = s - \ell - d$, then apply (d) to s - d.

(5). (f). If S is non-ordinary we have $c' \ge e$, thus $2c' \ge c' + e \ge c$, by (1). Now, if $d' \ge e$, then $c' \ge e+2$ and so $2c' = c' + c' \ge c' + e + 2 \ge c + 2$.

(g). If d - t = 0, then either c = e and S is ordinary, or $d - t < e \le d$, so that $e - \ell \in S$, by definition of t (2.2), impossible by item (1). \diamond

Theorem 2.8 [4, Th. 3.1] With Setting 2.1, let S be a non-ordinary semigroup. Let m, t be as in (2.2). Then

- (1) If either c+c'-2 > 2d and 0 < t < 2, or c+c'-2 < 2d, then m = 2d-q-t.
- (2) If t = 3 or t = 4, then $m \leq 2d g t$ and $m = 2d - g - t \iff \{d - 1, ..., d - t + 1\} \cap S \neq \{d - t + 1\}.$
- (3) If $t \ge 5$ then $m \le 2d g 4$. The equality holds if and only if $\{d-1, d-2, d-3\} \cap S = \{d-2\} \text{ and } (d-4 \in S \iff d-\ell-4 \in S).$

Proof. If $c + c' - 2 \leq 2d$, we have c + c' - 2 = 2d - t by (2.5), and the equality m = 2d - t - g, by ([4, Th.3.1.1]). The other cases are proved in [4, Th.3.1]. \diamond

3 Preliminary results.

In order to improve the results of theorems (2.3) and (2.8), we shall analyze the sets $N(s_i)$ (see (2.1)) in detail. Since either for ordinary semigroups or for elements greater then 2c all is known, in what follows we shall always assume S non-ordinary and consider $N(s_i)$, only for elements $s_i \leq 2c-1$. First we introduce some new notation and prove some technical facts.

Setting 3.1 Let $s_i \in S$ and let $N(s_i) = \{(x, y) \in S^2 \mid x + y = s_i\}$ as in (2.1):

• $S' := \{r \in S \mid r < c'\} = [0, d'] \cap S.$

• $A(s_i) := \{(x, y), (y, x) \in N(s_i) \mid x < c', c' \le y \le d\};$

further denote by

• $B(s_i) := \{(x,y) \in N(s_i) \mid (x,y) \in [c',d]^2 \}; \quad \beta(s_i) := \#B(s_{i+1}) - \#B(s_i).$

 $\alpha(s_i) := \#A(s_{i+1}) - \#A(s_i).$

- $C(s_i) := \{(x,y) \in N(s_i) \mid (x,y) \in [0,d']^2 \}; \quad \gamma(s_i) := \#C(s_{i+1}) \#C(s_i).$
- $A_c(s_i) := \{(x, y), (y, x) \in N(s_i) \mid x \ge c\};$ $\delta(s_i) := \#A_c(s_{i+1}) \#A_c(s_i).$

When $s_{i+1} = s_i + 1$ (e.g, for $s_i \ge c$), we shall often omit indexes, as well we shall write respectively $\alpha, \beta, \gamma, \delta$ when no confusion arises.

Remark 3.2 (1) With the above Notation 3.1, we obtain $N(s_i) = A(s_i) \cup B(s_i) \cup C(s_i) \cup A_c(s_i)$

where the union is disjoint. Therefore to calculate $\nu(s_{i+1}) - \nu(s_i)$ we shall use the equality: $\nu(s_{i+1}) - \nu(s_i) = \alpha(s_i) + \beta(s_i) + \gamma(s_i) + \delta(s_i)$.

As we shall prove later, the above summands can be easily known for each element $s_i \in S$, with the exception of $\gamma(s_i)$; in fact the subsets $C(s_i)$ are quite difficult to manage if $s_i < 2d'$. For this reason, when $s_i < 2d'$ we can evaluate $\nu(s_{i+1}) - \nu(s_i)$ only in particular cases; on the other hand we are able to calculate $\nu(s_{i+1}) - \nu(s_i)$ for $s_i \geq 2d'$.

(2) For the pair $(0, s_i)$ of $N(s_i)$, note that: $(0, s_i) \in A_c(s_i)$ if $s_i \ge c$, while $(0, s_i) \in A(s_i)$ if $c' \le s_i \le d$, and $(0, s_i) \in C(s_i)$ in the remaining cases $(s_i \le d')$.

Lemma 3.3 Let $s_i \in S$ and let $A(s_i)$, $\alpha(s_i)$ be as in Setting 3.1. Then:

(1) If either $s_i < c'$, or $s_i > d + d'$, then $A(s_i) = \emptyset$.

(2)
$$\alpha(s_i) = \begin{bmatrix} -2 & if & (s_{i+1} - c' \notin S' \text{ and } s_i - d \in S') \\ 0 & if \begin{bmatrix} either & (s_{i+1} - c' \notin S' \text{ and } s_i - d \notin S') \\ or & (s_{i+1} - c' \in S' \text{ and } s_i - d \notin S') \\ 2 & if & (s_{i+1} - c' \in S' \text{ and } s_i - d \notin S'). \end{bmatrix}$$

Proof. First note that for each $s \in S$ and for each $(x, y) \in A(s)$ we have $x \neq y$ because $A(s) = \{(x, y), (y, x) \in S^2 \mid x + y = s, x \leq d', c' \leq y \leq d\}$. (1). If $s_i \leq c' - 1$, $A(s_i) = \emptyset$, by definition. If $x + y = s_i > d + d'$, and $x \leq d'$, then y > d. Hence $s_i > d + d'$, implies $A(s_i) = \emptyset$.

(2). Case (a) - If c' = d, then (2) holds because we have

 $\begin{array}{ll} A(s_i) \subseteq \{(s_i-d,d), (d,s_i-d)\}, & A(s_{i+1}) \subseteq \{(s_{i+1}-d,d), (d,s_{i+1}-d)\}.\\ Case \ (b) \text{- If } c' \leq d-1, \ \text{denote by} & i_0 \in \mathbb{N} \text{ the index such that } s_{i_0} = c'. \end{array}$ We divide the proof in several subcases.

- If $i \leq i_0 - 2$, then $A(s_i) = A(s_{i+1}) = \emptyset$ and $\alpha(s_i) = 0$, so (2) holds because we have $s_{i+1} - c' \notin S', s_i - d \notin S'$.

- If $i = i_0 - 1$, then $A(s_i) = \emptyset$, $A(s_{i+1}) = A(c') = \{(0, c'), (c', 0)\}$ and $\alpha(s_i) = 2$, so (2) holds because $s_{i+1} - c' = 0 \in S'$, $s_i - d \notin S'$.

- If $c' \leq s_i \leq d-1$, then $s_{i+1} = s_i + 1$, hence for each $(x, y) \in A(s_i)$, with $c' \leq y \leq d-1$, one has: $(x, y) \in A(s_i) \iff (x, y+1) \in A(s_{i+1})$. Now call $A' := \{(x, y), (y, x) \in A(s_i) \mid c' \leq y \leq d-1\},$

 $A'' := \{(x, y+1), (y+1, x) \mid (x, y) \in A'\}.$ Clearly #A' = #A'', further we have $A(s_i) = \begin{bmatrix} A' \cup \{(s_i - d, d), (d, s_i - d)\} & if \quad s_i - d \in S' \\ A' & if \quad s_i - d \notin S' \\ A(s_{i+1}) = \begin{bmatrix} A'' \cup \{(s_{i+1} - c', c'), (c', s_{i+1} - c')\} & if \quad s_{i+1} - c' \in S' \\ A'' & if \quad s_{i+1} - c' \notin S' \end{bmatrix}$ Then (2) is true.

- If $s_i = d$, then $s_{i+1} = c$, $A(s_i) = \{0, d\}, (d, 0)\}$ and we are done since from the inequalities $0 < \ell + 1 = c$, $A(c_i) = (c, d)$, (d, o) and we are done so from the inequalities $0 < \ell + 1 = c - d \le c - c' \le e$ (2.7.1), we deduce that $A(s_{i+1}) = \begin{bmatrix} \emptyset & \text{if } c' \ne c - e \\ \{(c', e)(e, c')\} & \text{if } c' = c - e. \end{bmatrix}$ - If $c \le s_i \le d + d' - 1$, then proceed as in case $c' \le s_i \le d - 1$.

- If $s_i = d + d'$, then $A(s_i) = \{(d', d), (d, d')\}, A(s_{i+1}) = \emptyset$, by (1), so that

 $\alpha(s_i) = 2$ and assertion (2) still holds because $d + d' + 1 - c' \notin S'$ (see (1)). - If $s_i > d + d'$, then $A(s_i) = A(s_{i+1}) = \emptyset$, $\alpha(s_i) = 0$ and (2) is satisfyed

since $s_i - d \notin S'$ and $s_{i+1} - c' \notin S'$ (see (1).

Lemma 3.4 For $s_i \in S$, let $B(s_i)$ and $\beta(s_i)$ be as in (3.1) and let $i_1 \in \mathbb{N}$ be such that $s_{i_1} = 2c'$.

- (1) If d' > 0, then $s_{i_1-2} = 2c' 2$.
- (2) If $s_i < 2c'$, or $s_i > 2d$, then $B(s_i) = \emptyset$.

(3)
$$\beta(s_i) = \begin{bmatrix} 0 & if \quad s_i \leq s_{i_1-2} & or \quad s_i > 2d \\ 1 & if \quad s_{i_1-1} \leq s_i \leq c' + d - 1 \\ -1 & if \quad c' + d \leq s_i \leq 2d. \end{bmatrix}$$

Proof. (1) follows by (2.7.5).

(2). Since by definition $B(s_i) \subseteq [c', ..., d]^2$, obviously for $s_i < 2c'$, or $s_i > 2d$ one has $B(s_i) = \emptyset$.

(3). The first case is obvious by (2).

- For the case $i = i_1 - 1$, i.e. $s_{i+1} = 2c'$, clearly we have $B(s_i) = \emptyset$, while $B(2c') = \{(c', c')\}$. Thus $\beta = 1$.

- If $2c' \leq s_i \leq c' + d - 1$, recall that $2c' \geq c$ for every non-ordinary semigroup by (2.7.4). Therefore if $s_i \ge 2c'$, then $s_i + 1 = s_{i+1}$. Now let $s_i = 2c' + h$, with $0 \le h \le d - c' - 1$. Then:

$$B(s_i) = \{(c', c'+h), (c'+1, c'+h-1), ..., (c'+h, c')\}$$

and so $\#B(s_i) = h+1$, $\#B(s_i+1) = h+2$, $\beta(s_i) = \#B(s_i+1) - \#B(s_i) = 1$. - If $c' + d \leq s_i \leq 2d$, let $s_i = 2d - k$, with $0 \leq k \leq d - c'$. Then

$$B(s_i) = \{(d-k,d), (d-k+1, d-1), ..., (d, d-k)\}$$

and so, $\#B(s_i) = k + 1$, $\#B(s_i + 1) = k$ (in particular for k = 0, note that $B(s_i) = \{(d, d)\}, B(s_i+1) = \emptyset$. Hence $\beta(s_i) = \#B(s_i+1) - \#B(s_i) = -1$. \diamond

By the definition of C(s) one immediately obtains the following equalities.

Lemma 3.5 Let $s \in S$ and let C(s) be as in (3.1). We have:

- (1) If $s \ge 2d' + 1$, then $C(s) = \emptyset$ and $\gamma(s) = 0$.
- (2) $C(2d') = \{(d', d')\}$ and $\gamma(2d') = -1$.

Example 3.6 This example shows that for s < 2d' we can have $C(s) \neq \emptyset$. Let $S = \{0, 10_e, 11, 12, 13_{d'}, 15_d, 20_c \rightarrow\}$ For s = 2d' - 4 = 22, we have $C(s) = \{(10, 12), (11, 11), (12, 10)\}.$

Lemma 3.7 Let $s_i \in S$ and let $A_c(s_i)$, $\delta(s_i)$ be as in Setting 3.1. Then:

(1)
$$A_c(s_i) = \emptyset \iff s_i < c.$$

(2)
$$\delta(s_i) = \begin{bmatrix} if & 0 \le s_i \le 2c - 1 : \\ if & s_i \ge 2c : \end{bmatrix} \begin{bmatrix} 0 & \Longleftrightarrow & s_{i+1} - c \notin S \\ 2 & \Longleftrightarrow & s_{i+1} - c \in S \\ 1 & . \end{bmatrix}$$

Proof. (1) is obvious: if $s_i = c + h \ge c$, then $(s_i, 0) \in A_c(s_i)$. (2). For $s_i < d$, we have $s_{i+1} - c \notin S$, and we are done. If $s_i = d$, then $s_{i+1} = c$, hence $A_c(d) = \emptyset$ by (1), $A_c(c) = \{(0, c), (c, 0)\}$.

For $d < s_i \leq 2c - 1$, since $s_i \geq c$, we have $s_{i+1} = s_i + 1$, thus let $s := s_i$ and let $X(s) := \{(x, y) \in A_c(s) \mid x \geq c\} \subseteq A_c(s)$: we write X(s) + (1, 0) in order to mean the set $\{(x, y) + (1, 0) \mid (x, y) \in X(s)\}$. The statement follows from the inclusions

 $X(s) + (1,0) \subseteq X(s+1) \subseteq (X(s) + (1,0)) \cup \{(c,s+1-c)\}.$ In fact for each pair $(c+h, y) \in X(s)$, one has $(c+h+1, y) \in X(s+1)$. Further for each pair $(x, y) \in X(s)$ one has $x \neq y$, otherwise x = c+h = y = s-c-hwould imply s = 2c + 2h > 2c, which contradicts the assumption $s \leq 2c - 1$. Hence $\#A_c(s) = 2(\#X(s)) = 2\#(X(s) + (1,0))$ and (2) holds.

When $s_i \ge 2c$ the result follows by a direct computation, because in this case $N(s_i) = A_c(S_i)$.

Remark 3.8 Since we shall use deeply the preceding lemmas (3.3), (3.4), (3.5), it is convenient to note that in the case $s \leq 2d < c + c' - 2$, since $d - \ell \leq c' - 2$ (2.7.2), we have $s+1-c \in S \iff s+1-c \in S'$. In fact $s+1-c = s-\ell-d \leq d-\ell$. Moreover for $s \leq 2c' - 2$ we have $s + 1 - c' \in S \iff s + 1 - c' \in S'$ and the same holds for s - d.

As follows by lemmas (3.3), (3.4), (3.5), (3.7) and Remark 3.2, for each element $s_i \in S$ the difference $\nu(s_{i+1}) - \nu(s_i)$ can be easily described in function of γ . This is shown in next Theorem (3.10), by means of a series of tables.

Setting 3.9 Let $S' = \{s \in S \mid s \leq d'\}$ as in (3.1). In the following tables for an integer r we write respectively " \times " if $r \in S'$, " \bigcirc " if $r \notin S'$.

Theorem 3.10 With setting (3.1) and (3.9), let $i_1 \in \mathbb{N}$ be such that $s_{i_1} = 2c'$. The following tables describe the difference $\nu(s_{i+1}) - \nu(s_i)$ for $s_i \in S$, $s_i < 2c$. (a) If $i \le i_1 - 2$ (hence $s_i \le 2c' - 2$), then $\beta = 0$,

$\begin{bmatrix} s_{i+1} - c & s_i - d & s_{i+1} - c' & \alpha & \beta & \delta & \nu(s_{i+1}) - \nu(s_i) \\ \notin S & \bigcirc & \bigcirc & 0 & 0 & 0 & \gamma \\ \notin S & \times & \bigcirc & -2 & 0 & 0 & \gamma - 2 \\ \notin S & \bigcirc & \times & 2 & 0 & 0 & \gamma + 2 \\ \notin S & \times & \times & 0 & 0 & 0 & \gamma \\ \in S & \bigcirc & \bigcirc & 0 & 0 & 2 & \gamma + 2 \end{bmatrix}$	
$ \begin{array}{ c c c c c c c c c c c } \notin S & \times & \bigcirc & -2 & 0 & 0 & \gamma - 2 \\ \notin S & \bigcirc & \times & 2 & 0 & 0 & \gamma + 2 \\ \notin S & \times & \times & 0 & 0 & 0 & \gamma \end{array} $	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\in S$ \bigcirc \bigcirc 0 0 2 $\gamma+2$	
$\in S \bigcirc \times 2 0 2 \gamma + 4$	
$\in S$ $ imes$ \circ -2 0 2 γ	
$\in S \qquad imes \qquad imes \qquad 0 0 2 \qquad \gamma+2$	
(b) If $s_i \in [s_{i_1-1}, c'+d-1] \cap S$, then $s_{i+1} - c' \notin S'$, $\beta = 1$,	
$\begin{bmatrix} s_{i+1} - c & s_i - d & s_{i+1} - c' & \alpha & \beta & \delta & \nu(s_{i+1}) - \nu(s_i) \\ \in S & \bigcirc & \bigcirc & 0 & 1 & 2 & \gamma + 3 \\ \in S & \times & \bigcirc & -2 & 1 & 2 & \gamma + 1 \\ \notin S & \bigcirc & \bigcirc & 0 & 1 & 0 & \gamma + 1 \\ \notin S & \bigcirc & \bigcirc & 0 & 1 & 0 & \gamma + 1 \end{bmatrix}$)]
$\in S$ \bigcirc \bigcirc 0 1 2 $\gamma+3$	
$\in S \times \circ -2 1 2 \gamma + 1$	
$\notin S \bigcirc \bigcirc 0 1 0 \gamma + 1$	
$ \oint S \times \bigcirc -2 1 0 \qquad \gamma - 1 $	
(c) If $s_i \in [c'+d, 2d] \cap S$, then $s_i + 1 \in S$, $s_i - d \notin S'$, $s_i + d \notin S'$, $s_i + d \notin S'$.	$+1-c' \notin S',$
$\begin{bmatrix} s_{i} + 1 - c & s_{i} - d & s_{i} + 1 - c' & \alpha & \beta & \gamma & \delta & \nu(s_{i} + 1) \\ \in S & \bigcirc & \bigcirc & 0 & -1 & 0 & 2 & 1 \end{bmatrix}$	$-\nu(s_i)$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\left[\begin{array}{cccccccccccccccccccccccccccccccccccc$.]

Proof. It follows by ((3.3), (3.4), (3.5), (3.7)). In case (b), we have $s_i + 1 \in S$ by (2.7.4) (recall: in this section we assume S non ordinary). In cases (c), (d) one has $s_i - d \notin S'$, because $s_i - d \geq c'$.

For $s_i \ge c' + d$ we know $\nu(s_{i+1}) - \nu(s_i)$ by Theorem 2.3 and by items (c), (d) of Theorem 3.10 above. Now we shall achieve the answer for $2d' \le s_i < c' + d$; when $2d' + 1 \le s_i < c' + d$, since $0 \le \beta(s_i) \le 1$, $\gamma = 0$, it is convenient to express the difference $\nu(s_{i+1}) - \nu(s_i)$ in function of the parameter β .

Theorem 3.11 With setting (2.1), (3.1), (3.9), let S be a non-ordinary semigroup and let $s_i \in [2d', c' + d - 1] \cap S$. Then the difference $\nu(s_{i+1}) - \nu(s_i)$ can be evaluated as follows.

(1) Let $s_i = 2d'$. Then: $\beta = 0$, $\gamma = -1$ and

$\begin{array}{c} s_{i+1} - c \\ \notin S \end{array}$	$s_i - d$ \times \odot \sim \odot		$ \begin{array}{c} -2 \\ 0 \\ 0 \\ -2 \end{array} $	0 0 0 0		$\begin{array}{c} 0 \\ 0 \\ 0 \\ 2 \end{array}$	$\nu(s_{i+1}) - \nu(s_i) \\ -3 \\ -1 \\ -1 \\ -1 \\ 1 \\ 1$
,	O X	-	~	•	_	•	
	X	0	_	•	_	_	-1 1
$\in S$	×	×	_	•	$^{-1}$	•	1
$\in S$	\bigcirc	0	0	0	-1	2	1
$\in S$	0	×	2	0	-1	2	3

(2) Assume that $2d' + 1 \le s_i \le c' + d - 1$. Then: $\beta \in \{0, 1\}, \gamma = 0$ and

Γ	$s_{i+1} - c$	$s_i - d$	$s_{i+1} - c'$	α	γ	δ	$\nu(s_{i+1}) - \nu(s_i)$
	$\notin S$	×	0	-2			$-2 + \beta$
	$\notin S$	×	×	0	0	0	eta
	$\notin S$	\bigcirc	0	0	0	0	eta
	$\notin S$	\bigcirc	×	2	0	0	$2 + \beta$
	$\in S$	×	0	-2	0	2	eta
	$\in S$	×	×	0	0	2	$2 + \beta$
	$\in S$	\bigcirc	\bigcirc	0	0	2	$2 + \beta$
	$\in S$	\bigcirc	×	2	0	2	$4 + \beta$

Proof. The theorem follows by (3.2), (3.3), (3.4), (3.5), (3.7) and Th.3.10. \diamond

4 New evaluations or bounds for *m*.

By Theorem 2.8 we know that m = 2d - t - g under suitable conditions, but this equality is not true in general. However when $d - t \ge d'$, we always have m = 2d - t - g: this is proved by the following theorems (4.1) and (4.2).

4.1 The case $d-t \ge d'$.

Theorem 4.1 Let t, m be as in (2.2). If $c' \leq d - t \leq d$, then $s_m = 2d - t$.

Proof. Let s = 2d - t + h, with $0 \le h \le t$. In this case $c' + d \le s \le 2d$ and so $s + 1 \in S$. Further $s + 1 - c \in S \iff h \ge 1$ by the definition of t and by (2.7.4). Then we have the result by (2.3) and by table 3.10.(c).

Theorem 4.2 Assume $d-t \leq d'$. Then d' > 0 and the following relations hold

- (1) $s_m \le d + d'$.
- (2) $s_m = d + d' \iff d t = d'.$

Proof. First note that $d-t \ge e$ (2.7.5), hence $d' \ge d-t > 0$; thus $d+d' \ge c$ and for $s_i \in [d+d', 2d]$, we have $s_i + 1 \in S$.

(1). By (2.3.2) it suffices to prove that for every $s_i \in [d + d' + 1, 2d]$ we have: $\nu(s_{i+1}) \ge \nu(s_i).$ - For $d+d'+1 \leq s_i \leq c'+d-1$, we achieve the proof by using table 3.11.(2). In fact we have $\alpha = 0, \ \beta \geq 0$, by (3.3), (3.4) and so we are done.

- For $c' + d \leq s_i \leq 2d$, we get $\nu(s_{i+1}) = \nu(s_i) + 1$ by table 3.10.(c): in fact $s_i - d \in S$ (since $c' \leq s_i - d \leq d$) and the assumption $d - t \leq d'$ assures that $d - t < s_i - d \leq d$. Therefore $s_{i+1} - c \in S$, by (2.7.4).

(2) Let s = d+d'; we shall prove that $\begin{cases} \nu(d+d'+1) < \nu(s), & if \quad d-t=d'\\ \nu(d+d'+1) \ge \nu(s), & if \quad d-t<d'. \end{cases}$ Clearly we have 2d'+1 < s < c'+d-1 and $s-d \in S'$; further $s+1-c=d'-\ell$, so: $s+1-c \notin S \iff d-t=d'$ (by (2.2) and (2.7.4)). Finally, $s+1-c' \notin S'$, because $s+1-c' \ge d'+1$; hence we are in the first or

in the fifth row of table 3.11.(2) and we are done because $\beta \in \{0, 1\}$.

4.2 The case d - t < d'.

Now we shall assume d - t < d': we already know that $s_m < d + d'$ (Th. 4.2). In this case we can have $s_m \neq 2d - t$. For example, if t = 4 and $\{d - 1, d - 2, d - 3\} \cap S = \{d - 3\}$, one has: d - t = d - 4, d' = d - 3 and m < 2d - g - t, by (2.8.2). This example can be generalized: in fact we shall prove that m < 2d - t - g whenever 2d' - d < d - t < d', c' = d and $d - t + 1 \in S$ (4.6). We shall estimate the difference $\nu(s_{i+1}) - \nu(s_i)$ for each $s_i \geq 2d'$ by using the tables (1), (2) of (3.11). Note that in the case d - t < d', we have c + c' - 2 > 2d by (2.5), moreover we have $t \geq 3$ and so S is non-acute (2.3.4). Therefore, by Lemma 2.7.3, $2d' \geq c$, and for each $s \in S$, s greater or equal to 2d', we have $s + 1 \in S$. At first (3.10) and (3.11.2) give easily the next corollary.

Corollary 4.3 (1) Let $s_i \in S$, and let $2d' + 1 \leq s_i \leq c' + d - 1$. The following conditions are equivalent:

- (a) $\nu(s_{i+1}) < \nu(s_i)$.
- (b) $s_{i+1} c \notin S, \ s_i d \in S', \ s_{i+1} c' \notin S'.$
- (2) If $s_i \in S$, $s_i \ge 2d' + 1$ and $s_{i+1} c \in S$, then $\nu(s_i) \le \nu(s_{i+1})$.

Proof. (1) is immediate by (3.11.2), since we have $\beta \in \{0, 1\}$. (2) It follows by (1) for $s_i < c' + d$; for $s_i \ge c' + d$, see tables (c), (d) of (3.10) and (2.3.2). \diamond

Theorem 4.4 Assume d - t < d'. We have:

(1) If $d - t \ge 2d' - d$:

(a)
$$s_m = 2d - t$$
 if $\begin{bmatrix} either & d - t = 2d' - d \\ or & d - t > 2d' - d \\ or & d - t > 2d' - d \\ either \\ and & 2d - t + 1 - c' \notin S'. \end{bmatrix}$
(b) $s_m < 2d - t$ in the other cases: $(2d - t + 1 - c' \in S' \\ either \\ and & d - t > 2d' - d).$

(2) In case (1.b) consider the set

 $X := \{s \in S \cap [2d'+1, 2d-t-1] \mid s \text{ verifies conditions } 4.3.(b)\}.$ Then:

- (c) $2d' + 1 \le s_m < 2d t$ if and only if $X \ne \emptyset$; in this case s_m is the maximum of X.
- (d) $s_m = 2d'$ if and only if $X = \emptyset$ and 2d' verifies one of the first four rows in table 3.11.(1).
- (e) $s_m < 2d'$ in the remaining cases.

(3) If d - t < 2d' - d:

- $(f) \ s_m \le 2d',$
- $(g) \ s_m = 2d' \iff (2d' d \in S \iff 2d' + 1 c \in S) \ and \ 2d' + 1 c' \notin S.$

Proof. (1). When d - t < d', we know that $s_m < d + d'$, by (4.2). We start by considering the elements $s \in S$ such that $2d - t \leq s < d + d'$; thus let

s = 2d - t + k, with $0 \le k < d' - (d - t)$.

Suppose
$$2d - t \ge 2d'$$
.

- If k > 0, we claim that $\nu(2d - t + k) \le \nu(2d - t + k + 1)$. First notice that (*) $2d' \le 2d - t < s < d + d'$ by the assumptions;

(**) $s - d \in S \implies s + 1 - c \in S$ by (2.7.4); in fact, d - t < s - d < d. Now the claim follows by (4.3.1)

- If k = 0, i.e. s = 2d - t, then: $s + 1 - c \notin S$, $s - d = d - t \in S'$. If s > 2d', then by (4.3.1), $\nu(s + 1) < \nu(s) \iff s + 1 - c' \notin S'$. Then (a) and (b) follow.

If s = 2d', then s verifies one of the first two rows of table 3.11.(1) so that $\nu(s+1) < \nu(s)$.

(2). Suppose 2d' < 2d - t and $s_m < 2d - t$. Then: (c) is immediate by (4.3.1); (d) follows from (c) and table 3.11.(1).

(3). Suppose 2d - t < 2d'. If $2d' \le s < d' + d$, then $d - t < 2d' - d \le s - d < d$; and so $s - d \in S \implies s + 1 - c \in S$ by (2.7.4). Then: if s > 2d', (f) is proved by (4.3); if s = 2d' one obtains (g) by table 3.11.(1). \diamond

When d - t < d', Theorem 4.4 gives upper bounds for s_m and the exact value under certain assumptions, in particular when 2d - t = 2d'. For the remaining cases we obtain more precise estimations of s_m in some special situation (see Corollary 4.6).

Lemma 4.5 Suppose 2d - t < 2d' (so, d - t < d' - 1). Let $s \in S$ be such that $2d - t + 1 \le s < 2d'$ and let C(s) be as in (3.1). Then s > c and

(1) If $(x, y) \in C(s)$, then x > d - t, y > d - t.

(2) The following inequalities hold:
$$\begin{cases} d-t+1 < s-d' < d' \\ d-t+2 < s+1-d' \le d'. \end{cases}$$

(3) Moreover if $[d-t+1, d'-1] \cap S = \emptyset$, then

$$\gamma(s) = \begin{bmatrix} 0 & if & 2d - t + 1 \le s \le 2d' - 2\\ 1 & if & s = 2d' - 1. \end{bmatrix}$$

Proof. We have $2d - t \in S$, 2d - t > d (by 2.7.5), and so $2d - t \ge c$. (1) is easy.

(2). We have: $d - t + 1 \le s - d < s - d' < d'$.

(3). Suppose now that $[d-t+1, d'-1] \cap S = \emptyset$ and let $2d-t+1 \le s \le 2d'-1$. Then: $C(s) = \emptyset$, $C(s+1) = \begin{bmatrix} \emptyset & if \quad s \le 2d'-2\\ \{(d', d')\} & if \quad s = 2d'-1 \end{bmatrix}$;

in fact, if $(x, y) \in C(s)$ (resp. C(s+1)), with x, y < d', then d-t < x, y < d' by (1), impossible by the assumption $[d-t+1, d'-1] \cap S = \emptyset$. Further by (2) and the assumptions we have: $s - d' \notin S'$, and also $s + 1 - d' \in S' \iff s = 2d' - 1$. Then the result follows. \diamond

Corollary 4.6 Suppose $d - t \leq d' - 1$.

(1) If
$$d-t \le 2d' - d - 1$$
 and $[d-t+1, d'-1] \cap S = \emptyset$,
then $s_m = \begin{bmatrix} 2d' & if & 2d'+1-c \notin S \\ 2d-t & if & 2d'+1-c \in S. \end{bmatrix}$

(2) If
$$d-t > 2d'-d$$
 and $c' = d$, then $\begin{bmatrix} s_m = 2d-t & if \quad d-t+1 \notin S \\ s_m < 2d-t & if \quad d-t+1 \in S. \end{bmatrix}$

Proof. (1). By (4.4.3.f), we know that $s_m \leq 2d'$. Since by the assumptions we have $d - t < 2d' - d < 2d' + 1 - d \leq 2d' + 1 - c' < d'$, by (4.4.3g) we get $s_m = 2d' \iff 2d' + 1 - c \notin S$.

Suppose $s_m < 2d'$: if $s \in S$ and $2d - t \leq s$, then $s \geq c$ (see the proof of (4.5)) and so $s + 1 \in S$. Now for $2d - t + 1 \leq s < 2d'$, we have s < 2c' - 2 and so $\nu(s+1) \geq \nu(s)$ by table 3.10.(a), because $s - d \notin S'$ and $\gamma \geq 0$ by Lemma 4.5.3. Now it suffices to show that $\nu(2d - t + 1) < \nu(2d - t)$. We have: • $\gamma(2d - t) \leq 1$. To see this fact, note that:

$$C(2d - t + 1) = \begin{bmatrix} \emptyset & if \ d - t \neq 2d' - d - 1\\ \{(d', d')\} & if \ d - t = 2d' - d - 1. \end{bmatrix}$$

In fact, clearly, $(x, y) \in C(2\overline{d} - t + 1) \Longrightarrow x > d - t, y > d - t$ (otherwise, $x \leq d - t \Longrightarrow y > d$, impossible); then, $x < d' \Longrightarrow d - t < x < d'$, impossible since $[d - t + 1, d' - 1] \cap S = \emptyset$. Finally, if x = d', then

 $d-t < y = 2d-t+1-d' \leq d'$ (by assumption) and so $y=d', \ 2d-t=2d'-1.$ Now, for s:=2d-t we have:

 $s+1-c \notin S, \ s-d=d-t \in S', \ s+1-c' \notin S$

 $(s+1-c' \notin S$, because $d-t+1 = s+1-d \leq s+1-c' \leq 2d'-c' < d'$). Hence by the second row of table 3.10.(a), and since $\gamma \leq 1$, we get $\nu(s_{i+1}) - \nu(s_i) = \gamma - 2 \leq -1$. (2). Under these assumptions, 2d - t + 1 - c' = d - t + 1. Then the result follows by (4.4.1a).

Example 4.7 When either of the assumptions $[d - t + 1, d' - 1] \cap S = \emptyset$ and c' = d does not hold, the statements (1), (2) of (4.6) are not always true, as the following examples show.

(1) Let $S = \{0, 22_e, 27, 28, 30, 31_{d-t}, 32, 33, 35_{d'}, 38_d, 44_c \rightarrow \}$. (Here (4.6.1) fails). We have 69 = 2d - t = 2d' - 1, $[d - t + 1, d' - 1] \cap S \neq \emptyset$. By (4.4.3) we know that $s_m \leq 2d' - 1 = 69 < 2c' - 2$. Moreover $\nu(70) > \nu(69)$, by table 3.10.(a). In fact

for s = 69 we have: $s + 1 - c = 26 \notin S$, $s - d = 31 \in S'$, $s + 1 - c' = 32 \in S'$ and $\gamma(s) = 1$ because $C(69) = \emptyset$, $C(70) = \{(35, 35)\}$. Hence $s_m < 2d' - 1$. One can verify that $s_m = 68$, with $\nu(68) = 8$, $\nu(69) = 6$.

(2). (a) Let $S = \{0, 18_e, 21, 22, 24, 25_{d-t}, 27_{d'}, 29_{c'}, 30_d, 36_c \rightarrow \}$ $(\ell = t = 5)$. Here: 55 = 2d - t > 2d' = 54, $c' \neq d$, $d - t + 1 \notin S$. Since $2d - t + 1 - c' = 27 \in S'$, we have $s_m < 2d - t = 55$ by (4.4.1b). One can verify that $s_m = 54 = 2d - t - 1$, with $\nu(54) = 9$, $\nu(55) = 6$.

(b) Let $S = \{0, 18_e, 21, 22, 24, 25_{d-t}, 26_{d'}, 29_{c'}, 30_d, 36_c \rightarrow \}$ $(\ell = t = 5)$. Here: $c' \neq d$, d - t = 25 > 2d' - d = 22, $d - t + 1 \in S$ and $s_m = 2d - t$ by (4.4.1a), with $\nu(55) = 8$, $\nu(56) = 6$.

In next corollary we collect all the cases that give $s_m = 2d - t$.

Corollary 4.8 With setting 2.1, let t, m be as in 2.2. Then $s_m = 2d - t$ in the following cases.

- (1) If $d t \ge d'$.
- (2) For 2d' d < d t < d': if and only if $2d t + 1 c' \notin S'$.
- (3) If 2d' d = d t (< d').
- (4) If d-t < 2d'-d and $[d-t+1, d'-1] \cap S = \emptyset$: if and only if $2d'+1-c \in S$.

All the statements of (2.8) can now be easily deduced by (4.1), (4.2), (4.4), (4.6). To exemplify, in part (1) of next Corollary we derive explicitly the results in case $t \ge 5$.

Corollary 4.9 If $t \ge 5$, then

- (1) $s_m \leq 2d-4$ and the equality holds if and only if $\{d-1, d-2, d-3\} \cap S = \{d-2\}$ and $(d-4 \in S \iff d-\ell-4 \in S)$.
- (2) When $d-t \ge 2d'-d$, then $s_m \le 2d-t$.
- (3) When d t < 2d' d, then $s_m \le 2d' \le 2d 6$.

Proof. If d' = d - 2, then c' = d, d - t < 2d' - d = d - 4. It follows (4.4.3): $s_m \leq 2d - 4$ and $s_m = 2d - 4 \iff (d - 4 \in S \iff d - \ell - 4 \in S)$ and $d - 3 \notin S$. Then: $s_m = 2d - 4$ if and only if $\{d - 1, d - 2, d - 3\} \cap S = \{d - 2\}$ and $(d - 4 \in S \iff d - \ell - 4 \in S)$.

If $d' \leq d - 3$, we have to consider two cases:

when $d - t \ge 2d' - d$, then $s_m \le 2d - t$ (4.4.1),

when d - t < 2d' - d, then $s_m \le 2d' \le 2d - 6$ (4.4.3).

This proves the corollary. \diamond

Example 4.10 When t = 3, or t = 4, the cases still unsolved correspond exactly to the situation $[d - t + 1, d - 1] \cap S = \{d - t + 1\}$ already considered in (2.8): for instance let t = 3. This condition means c' = d and d' = d - 2. So we

are in case (1.b) of Theorem 4.4. Then by (4.4.2) one can easily verify that $s_m = 2d' = 2d - 4 \iff d - \ell - 4 \notin S$ and $d - 4 \in S$.

In the remaining cases: $s_m \leq 2d - 5$. For ℓ small, we are able to find s_m by a direct computation. We show the results for $t = \ell = 3$. In this case $d - 5 \in S$, $d - 6 \notin S$ and

 $\begin{array}{ll} \text{if } d-4 \notin S, & \text{then } s_m = 2d-5\\ \text{if } d-4 \in S, \ d-\ell-4 = d-7 \notin S, & \text{then } s_m = 2d-4\\ \text{if } d-4 \in S, \ d-\ell-4 = d-7 \in S, & \text{then } \begin{bmatrix} d-8 \notin S \Longrightarrow s_m = 2d-5\\ d-8 \in S \Longrightarrow s_m = 2d-7.\\ \end{bmatrix}$

Hence $s_m \ge 2d - 7 = 2d' - \ell$ for each S with $t = \ell = 3$ and the lower bound is achieved by any semigroup such that

 $[d-8,c] \cap S = \{d-8,d-7,d-5,d-4,d-3,d-2,d,d+4=c\}$ Also for $t=3, \ \ell=4$ one can verify that $s_m \ge 2d-8=2d'-\ell$.

Remark 4.11 In general, we have a feeling that the case d-t > 2d'-d, with c' = d and $d-t+1 \in S$ considered in (4.6.2) is the worst one in order to give a lower bound for s_m . After many calculations we conjecture that in this case we always have $s_m \geq 2d'-\ell$ (recall that if $s_m \neq 2d-t$, then d-t < d' by (4.8) and so $2d'-\ell \in S$ by Prop. 2.7.3). We illustrate the situation with an example which shows that we can have $s_m << 2d-t$.

$$\begin{split} S &= \{0, 31, 32, 33, 34, 35, 36, 38, 39, 40, 41, 42, 43, 44, 47_{d-t}, 48_{d'}, 50_d, 61_c \rightarrow \} \\ (\ell = 10, \ t = 3, \ 2d - t = 97). \quad \text{One can check that } s_m = 88 = 2d - t - 9 < 2d' = 96, \text{ and } \nu(88) = 9, \quad \nu(89) = 8. \text{ Note that in this case we have } s_m > 2d' - \ell. \end{split}$$

5 The case $\ell = 2$.

Now we consider the situation $\ell = 2$. In this case, for c + c' - 2 > 2d and $t \ge 3$ a complete information on the integer m is not yet known. In this section we find the integer m in function of the possible values of the parameter t. As a consequence we deduce also the value of m for semigroups with Cohen-Macaulay type $\tau = 3$ and for semigroups with $e \le 6$. First we prove and recall some facts.

Lemma 5.1 Let τ be the Cohen-Macaulay type of S. Then:

- (1) If $c-e \le c' \le c-e+1$, then S is acute.
- (2) Every gap $h \ge c e$ belongs to $S(1) \setminus S$, in particular $\{d+1, ..., d+\ell\} = \{c-\ell, ..., c-1\} \subseteq S(1) \setminus S.$
- (3) $\tau \ge \ell$ and if $\tau = \ell$, then c' = c e.
- (4) If t > 0, for each $k \in \mathbb{N}$, $0 \le k \le t 1$ such that $d k \in S$, we have $e \ne 2\ell + k$. Further
 - (a) If $t \ge 2$ and c' < d, then $e \ne 2\ell$, $e \ne 2\ell + 1$,
 - (b) If $c' \le d t \le d$, then $e \ne 2\ell + k$, for each $k \in \{0, ..., t 1\}$.

Proof. Items (1)-(3) are proved in [4, 4.10 and 4.11].

(4). Let k be as above. Then: $c - 2\ell - k - 1 = (c - \ell - 1) - k - \ell = d - k - \ell \in S$ by (2.7.4). If $e = 2\ell + k$, then $c - 1 - e \in S$, hence also $c - 1 \in S$, impossible. (a) follows by applying (4): if c' < d, one has $\{d - 1, d\} \subset S$. Also (b) is immediate by (4). \diamond

Proposition 5.2 Assume c + c' - 2 > 2d and S non-acute. Then:

(1)
$$d - c' + 2 \le \ell \le e - 3 - (d - c')$$
.

(2) $e \ge 5 + 2(d - c')$, and if $e \in \{5, 6\}$, then c' = d.

Proof. (1). The first inequality is proved in (2.7.2). In order to obtain the second one note that $c' \ge c - e + 2$ (by (5.1.1), since S is non-acute and by (2.7.1)). Then recall the equality $c = d + \ell + 1$. (2) is immediate by (1). \diamond

Lemma 5.3 Assume $\ell = 2$. Then:

- (1) $c + c' 2 > 2d \iff d = c'$.
- (2) The following conditions
 - (a) c + c' 2 > 2d and t > 0,
 - (b) d' = d 2.
 - (c) d = c' and $t \ge 2$,

are equivalent and imply: $t \ge 3 \iff d - 4 \in S$.

Proof. (1) follows immediately from (2.7.2) in the case $\ell = 2$. (2). (a) \Longrightarrow (b). If (a) holds, we have $d - 1 \notin S$ (since c' = d by (1)) and $d - 2 = d - \ell \in S$ (because t > 0); then d' = d - 2. (b) \Longrightarrow (c). The assumption d' = d - 2 implies: $d - 1 \notin S$, so that c' = d; $d - \ell = d - 2 \in S$. Then $t \ge 2$. (c) \Longrightarrow (a) follows by (1). Further, if the conditions of (2) hold, then: $t \ge 2$ and $t = 2 \iff d - 4 = d - \ell - 2 \notin S$ (because $d - \ell = d - 2 \in S$ and $d - 1 \notin S$ since d = c'). \diamond Lemma 5.4 Suppose $\ell = 2$, $t \ge 3$, $\{d - 3, d - 2\} \subset S$. Then one has: $[d - t - 1, d - 2] \cap \mathbb{N} \subset S$.

Proof. By the assumption $\{d-3, d-2\} \subset S$, it is enough to show that $d-k-1 \in S$ for $3 \leq k \leq t$: we prove by induction that if $[d-k, d-2] \cap \mathbb{N} \subset S$, then $d-k-1 \in S$. Since $d-(k-1) \in S$ and k-1 < t, then $d-k-1 = d-2-(k-1) = d-\ell-(k-1) \in S$, by (2.7.4).

Theorem 5.5 Suppose $\ell = 2$. Then the parameter m takes the following values.

(1)
$$s_m = 2d - t$$
 if $\begin{bmatrix} c + c' - 2 \le 2d, & or \\ c + c' - 2 > 2d & and \end{bmatrix}$ or $t \le 2,$
or $t = 4$
or $t \ge 5$ and $d - 3 \in S.$
(2) $s_m = 2d - 4$ if $c + c' - 2 > 2d$ and $\begin{bmatrix} either & t = 3 & and & d - 6 \notin S \\ or & t \ge 5 & and & d - 3 \notin S. \end{bmatrix}$

(3)
$$s_m = 2d - 6$$
 if $c + c' - 2 > 2d$, $t = 3$ and $d - 6 \in S$ (all the remaining cases).

Proof. For the cases $c + c' - 2 \le 2d$ and c + c' - 2 > 2d with $t \le 2$ see (2.8.1). Hence from now on assume that c + c' - 2 > 2d and $t \ge 3$: again by (2.8) we know that $s_m \leq 2d - 3$. By (5.3.2) S verifies:

 $d-1 \notin S, \quad d-2 \in S, \quad d-4 \in S, \quad c'=d.$

Further for $s_i \leq 2d - 2$ we have $B(s_i) = B(s_{i+1}) = \emptyset$ and $\beta(s_i) = 0$ (by (3.4), since 2c' - 2 = 2d - 2 and d' > 0).

Case t = 3. Since $\{d - 1, d - 2\} \cap S = \{d - 2\}$, we have $m \leq 2d - 4 - g$ (2.8.2). Further one has: $d-5 = d-\ell - t \notin S$.

Consider s = 2d - 4; then s + 1 - c = d - 6 and by (5.3) we have

 $s = 2d', \quad s - d = d - 4 \in S, \quad s + 1 - c' = s + 1 - d = d - 3 = d - t \in S.$ If $d-6 \notin S$ one has $\nu(s+1) < \nu(s)$ by the 2-nd row in table 3.11.(1), $s_m = 2d-4$. If $d-6 \in S$ one has $\nu(s+1) > \nu(s)$ by the 6-th line in the same table. In this second case consider $s \leq 2d - 5$: we have

 $C(2d-6) = \{(d-2, d-4), (d-3, d-3), (d-4, d-2)\}$ $C(2d-5) = \{(d-2, d-3), (d-3, d-2)\}$ $C(2d-4) = \{(d-2, d-2)\}.$

Note also:

 $2d-6-d = d-6 \in S, \ 2d-5-d = d-5 \notin S, \ 2d-4-c' = 2d-4-d = d-4 \in S.$ Then (table 3.10.(a)): $\nu(2d-4) - \nu(2d-5) \ge \gamma(2d-5) + 2 = 1$. Moreover $\alpha(2d-6) = -2, \ \gamma(2d-6) = -1; \ \text{since } \beta(2d-6) = 0, \ \delta(2d-6) \leq 2 \ \text{then we}$ have $\nu(2d-5) - \nu(2d-6) < 0$, and so $s_m = 2d - 6$.

The case t = 4 and the case $t \ge 5$, $d - 3 \notin S$ follow by (2),(3) of Th. 2.8. Finally we have to consider

the case $t \ge 5$, $d-3 \in S$: we already know that $m \le 2d-5-g$ by (2.8.3). For s = 2d - k, $5 \le k \le t$ we have $s \ge c$, since $s \ge d + (d - t) \ge c$ by (2.7.5). Further: $d - t \le d - k = s - d \le d - 5$; it follows that

 $d - t + 1 \le d - k + 1 = s + 1 - d = s + 1 - c' \le d - 4$. Therefore:

 $s - d \in S', \ s + 1 - c' \in S', \ s + 1 - c = d - \ell - k \in S, \ \text{if} \ k \neq t,$

 $s+1-c \notin S$ if k=t (by Lemma 5.4 and by (2.7.4)).

Now by table 3.10.(a): $\nu(s+1) - \nu(s) = \begin{bmatrix} \gamma(s) & \text{if } k = t \\ \gamma(s) + 2 & \text{if } k \neq t \end{bmatrix}$ The required result follows if we prove the

Claim. $\gamma(s) = -1$ for each s = 2d - k, $5 \le k \le t$.

Proof of the claim. If t = 5 and $d - 3 \in S$, then $\gamma(2d - 5) = -1$. In fact $C(2d-5) = \{(d-2, d-3), (d-3, d-2)\}\$

 $C(2d-4) = \{(d-2, d-2)\}.$

If $t \ge 6$ and $d-3 \in S$, since $[d-t-1, d-2] \cap \mathbb{N} \subset S$ by (5.4) and $d-1 \notin S$, for each $k \in \mathbb{N}$, $5 \le k \le t$ one has:

$$\begin{split} C(2d-k) &= \{(d-2,d-k+2), (d-3,d-k+3), ..., (d-k+2,d-2)\},\\ C(2d-k+1) &= \{(d-2,d-k+3), ..., (d-k+3,d-2)\}. \end{split}$$

Hence #C(2d - k + 1) = #C(2d - k) - 1, so that $\gamma(2d - k) = -1$.

As a first consequence we know the integer m for every semigroup S of multiplicity $e \leq 6$:

Corollary 5.6 (1) If $e \le 4$, then $s_m = 2d - t$.

(2) If $e \in \{5, 6\}$, then either $\ell = 2$ and Theorem 5.5 holds, or m = 2d - t - g.

Proof. If $e \leq 4$, we cannot have c + c' - 2 > 2d and t > 0, by (5.2.1) and (2.3.4). Hence either $c + c' - 2 \leq 2d$, or c + c' - 2 > 2d and t = 0: the claim follows by (2.8.1).

If e = 5, 6, we can assume that c + c' - 2 > 2d and $t \ge 3$, since in the other cases the result follows by (2.8.1). Then, if e = 5, by (5.2) one gets $\ell = 2$;

If e = 6, again by (5.2) it follows that $\ell \in \{2, 3\}$. The case $\ell = 3$, with $t \ge 3$ is impossible by (5.1.4), (applied with k = 0). \diamond

5.1 The case $\tau = 3$.

For a semigroup having Cohen-Macaulay type $\tau = 3$, Theorem 5.5 allows to complete the partial results of [4, Prop. 4.16]. This is shown in the following proposition.

Proposition 5.7 Suppose that S has Cohen-Macaulay type $\tau = 3$. Then $e \ge 4$ and

- (1) Either S is acute, or $(\ell = 2, d' = c'-2 \text{ and } S(1) \setminus S = \{c'-1, d+1, d+2\}).$
- (2) When $\ell = 2$, d' = c' 2 and c + c' 2 > 2d, we have:
 - (a) $S(1) \setminus S = \{d 1, d + 1, d + 2\}.$
 - (b) $t \ge max\{2, e-4\}.$
 - (c) If t > e 4, then e = 5.

In particular, if $t \ge 3$, then:

- (d) t = e 4 and $d t 3 \notin S$.
- $(e) \quad d-3 \in S.$

Proof. (1). If $\tau = 3$ obviously $e \ge 4$, by the well-known inequality $\tau \le e - 1$. Further, by (5.1) we get $\ell \le 3$ and either S is acute, or $\ell = 2$, $d' \ge c' - 2 \ge c - e$ (otherwise S is acute) that means d' = c' - 2, $c' - 1 \in S(1) \setminus S$ (since $c' - 1 \notin S$). Hence (1) is true.

(2). First note that c' = d by (5.3.1). This implies $t \ge 2$ by (5.3.2). Further $d - 1 \in S(1)$, since for each $s \in S \setminus \{0\}$, one has

 $d - 1 + s \ge d - 1 + e \ge d + 3 = c$, then $d - 1 + s \in S$.

Moreover $\{d+1, d+2\} \subseteq S(1) \setminus S$ by (5.1.2). Since $\#(S(1) \setminus S) = \tau = 3$, one has $S(1) \setminus S = \{d - 1, d + 1, d + 2\}$ hence (a) holds.

(b) If $t \leq e-5$, then $d-\ell-t \geq c-e$; in fact $d-\ell-t = d-2-t$ and we get $d - \ell - t \ge d - 2 - (e - 5) = d + 3 - e = c - e$. This fact implies: $d-\ell-t \in S(1) \setminus S$ by (5.1.2). On the other hand, by the assumption $\ell = 2$, we have: $d - \ell - t \leq d - 2 < d - 1$, that contradicts (a). It follows $t \geq e - 4$. (c) If t > e - 4, by (2.2) one has:

either(i) $d - (e - 4) \notin S$

(ii) $d - (e - 4) \in S$ and $d - \ell - (e - 4) \in S$. or

When (i) holds, since d - (e - 4) = c + 1 - e, we get $d - (e - 4) \in S(1) \setminus S$ (see (5.1.2)). Then, by (a), since d-(e-4) < d one necessarily has d+4-e = d-1, i.e., e = 5.

It is easily seen that (ii) cannot happen. In fact, $d - \ell - (e - 4) = d + 2 - e =$ $c-1-e \notin S.$

(d). Under the assumptions of (2), let $t \geq 3$. Then we have also $d - 4 \in S$ by (5.3). It follows that t = e - 4. In fact by (b) above, $t \ge e - 4$; but t > e - 4implies e = 5 (see (c)), hence $d + 1 = d - 4 + e \in S$, absurd. In particular, since t = e - 4, one has $d - t - 3 \notin S$, otherwise $d + 1 = d - t - 3 + e \in S$, a contradiction. This proves (d).

To see (e), note that by (d), $e - 4 = t \ge 3 \implies e \ge 7$. Hence $d - 3 \in S(1)$; in fact for every $s \in S \setminus \{0\}$ one has $d - 3 + s \ge d - 3 + 7 = d + 4 > c$, i.e., $d-3+s \in S$. Using (d) and (2a) we deduce that $d-3 \in S$.

Example 5.8 We show a semigroup which satisfies the conditions of (5.7.2): $S = \{0, 7_e, 10, 14, 15_{d'}, 17_{c'=d}, 20_c \rightarrow \}.$ Then: $\ell = 2, d = c', d - \ell = 15 \in S, d' = d - 2 = d - t, d' - \ell \notin S, t = 2.$ Further, $S(1) \setminus S = \{16, 18, 19\}$ and so $\tau = 3$, c + c' - 2 = 35 > 2d = 34.

Corollary 5.9 Assume that S has Cohen-Macaulay type $\tau = 3$. Then:

 $\left[\begin{array}{cc} s_m = 2d-4, & if \ t=3 \ and \ S \ is \ non-acute, \\ s_m = 2d-t & in \ all \ the \ remaining \ cases. \end{array}\right]$

Proof. If S is acute, by (2.3.4) we can use use (2.8.1). For the remaining cases, if $c + c' - 2 \le 2d$, see (2.8.). If c + c' - 2 > 2d, by (5.7) we have

$$\ell = 2, \quad t \ge 2 \quad \text{and} \quad \begin{bmatrix} or & t = 2, \\ or & t = 3 \\ or & t = 4, \\ or & t \ge 5 \\ or & t \ge 5 \\ or & d - 3 \in S, \end{bmatrix}$$

then it suffices to apply Theorem 5.5. \diamond

References

- M. Bras-Amoros, "Acute Semigroups, the Order Bound on the Minimum Distance, and the Feng-Rao Improvements", *IEEE Transactions on Information Theory*, vol. 50, no. 6, pp.1282-1289, (2004).
- [2] G.L. Feng, T.R.N. Rao, "A simple approach for construction of algebraicgeometric codes from affine plane curves.", *IEEE Trans. Inform. Theory*, vol. 40, no. 4, pp. 1003-1012, (1994).
- [3] T. Høholdt, J.H. van Lint, R. Pellikaan, "Algebraic geometry of codes", Handbook of coding theory, vol.1, pp. 871-961, Elsevier, Amsterdam, (1998).
- [4] A. Oneto, G. Tamone "On Numerical Semigroups and the Order Bound", *JPAA*, to appear, (2008).
- [5] C. Kirfel, R. Pellikaan, "The minimum distance of codes in an array coming from telescopic semigroups", *IEEE Trans. Inform. Theory*, vol. 41, pp. 1720-1732, (1995).