On the order bound of one-point
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L Abstract. Let S ={s; }ie;nw € IN be a numerical semigroup. For each ¢ € IN,
let v(s;) denote the number of pairs (s;—s;, s;) € S it is well-known that there exists
an integer m such that the sequence {v(s;)}ien is non-decreasing for ¢ > m. The
problem of finding m is solved only in special cases. By way of a suitable parameter t,
we improve the known bounds for m and in several cases we determine m explicitely.
In particular we give the value of m when the Cohen-Macaulay type of the semigroup
is three or when the multiplicity is lower or equal to six. When S is the Weierstrass
semigroup of a family {C;}icn of one-point algebraic geometry codes, these results
give better estimates for the order bound on the minimum distance of the codes {C;}.

Index Terms. Numerical semigroup, Weierstrass semigroup, algebraic geometry
code, order bound on the minimum distance.

1 Introduction

Let S C IN be a numerical semigroup, S = {s;};enw and let ¢, ¢, d,d denote
respectively the conductor, the subconductor, the dominant of the semigroup
and the greatest element in S preceding ¢ (when d > 0), as in Setting 2.1.
Further let ¢ be the number of gaps of S greater than d and g the genus of S. For
s; € S, call v(s;) the number of pairs (s;—sj, s;) € S?: when S is the Weierstrass
semigroup of a family {C; };en of one-point algebraic geometry (AG) codes (see,
e.g. [3]), Feng and Rao proved that the minimum distance of the code C; can
be bounded by the so called order bound, dorp(C;) := min{v(s;): j >i+1}
(see [2]). It is well-known that the sequence {v(s;)};cn is non-decreasing from
a certain ¢ (see[5]); then it is important to find the integer m determining the
largest point at which the sequence decreases, that is, dorp(C;) = v(si+1) for
i > m. A first approach to this problem can be found in [1], where the author
gave the value of m for acute semigroups recalled in (2.1). In [4] (see Theorem2.8
below), we improved this result: by introducing the new parameter
t:=min{j € N such that d—j€S, d—{—j¢S},
we deeply studied m for ¢ < 4. In particular we characterized the semigroups
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having m = 2d — t — ¢; in addition we proved that in all the remaining cases
m<2d—4—g.

In the present paper we further develope this topic. In Sections 2 and 3, after
fixing the setting and notation, we recall some known results and prove some
technical statements. In Section 4 we give exact evaluations or better bounds
for m in the unsolved cases. In fact we prove the following facts:

-when d <d-—t<d, then s, =2d—1t (4.1) and (4.2).

-when 2d' —d<d-t<d, then s, <2d-—t;
further we give necessary and sufficient conditions on S in order to have
Sm=2d—t or 2d <s,<2d—t (4.4.1)and (4.4.2).

-when d —t < 2d —d, then s,, <2d;
in addition we find the necessary and sufficient conditions on S for
having s, = 2d’ (4.4.3). We also calculate s,, under particular as-
sumptions (4.6.1).

Finally, in Section 5 we study completely the case ¢ = 2: we evaluate m in
function of the invariant ¢ (see Theorem 5.5) and, as a corollary, we determine
m for semigroups of Cohen-Macaulay type three (see Corollary 5.9) as well as
for semigroups with multiplicity < 6 (see Corollary 5.6) .

2 Preliminaries
We begin by giving the setting of the paper.

Setting 2.1 In all the article we shall use the following notation. Let IN denote
the set of all nonnegative integers. A numerical semigroup is a subset S of IN
containing 0, closed under summation and with finite complement in IN.

We denote the elements of S by {Si}ie]Nv with sp=0<s51 <...<8; <Sjg1....
Weset S(1):={beIN| b+ (S\{0}) C S}

We list below the invariants related to a semigroup .S we shall use in the sequel.

¢ = min{resS|r+INCS}, the conductor of S
:= the greatest element in S preceding c, the dominant of S
d = max{s;€S5|s; <d and s; —1¢ S}, the subconductor of S
d’ := the greatest element in S preceding ¢/, when d > 0
{ = c¢—1-—d, the number of gaps of S greater than d
g = #(N\YS), the genus of S (= the number of gaps of 5)
T = #(S(1)\95), the Cohen—Macaulay type of S
e = 81, the multiplicity of S.

We shall always assume e > 1, so that S £ IN. With this notation the semigroup
has the following shape (where “x” denote gaps and “ «— 7 intervals without

any gap): I
S=1{0,%...% ¢ ...,dx...x ¢ d x50 %, c—}.



Recall also that a semigroup S is called
e ordinary if S={0}U{n e N, n>c} [1,Def. 5.1];
e acute if either S is ordinary, or S is non-ordinary and ¢, d, ¢, d’
satisfy c¢—d<d —d [1, Def. 5.6.].

According to [3] and [1], for s; € S we shall denote

o N(si) = {(sj,s6)€S5%|si=sj+sp}={(si—sj, sj) € S*}
e v(s;) = FN(s;), the cardinality of N(s;)
o dorp(i) = min{v(s;) | j > i}, the order bound.

Now we recall some definition and former results for completeness.

Definition 2.2 We define the parameters m and t as follows
m :=min{j € IN such that the sequence {v(s;)}ien is non-decreasing fori > j}
t :==min{j € N suchthat d—je€S and d—0—j ¢ S}.

Theorem 2.3 Let S be as in Setting 2.1, and let i € IN. Then

(1) v(si)=i+1—g, forevery s; >2c—1. ([5, Th. 3.8])

(2) v(sit1) > v(s;), foreverys; >2d+1. [4, Prop. 3.9.1]

(3) If S is an ordinary semigroup, then m =0. ([1, Th. 7.3])

(4) If S is an acute semigroup then c¢+c¢ —2 <2d or t=0. ([4, Prop. 3.4]).

Remark 2.4 (1). Observe that for each s; > ¢, one has i = s; —g; this equality
is no more true if s; < ¢, hence to simplify the notations our statements shall
often deal with s, instead of m.
(2). Theorem 2.3 implies that 0 < s,,, < 2d for every non-ordinary semigroup.
Recalling the definition of dorp (i) above, one has:

dorp(i) = v(siy1), for every i>m.

The meaning of ¢ will be clear in next Theorem 2.8 where we gather the known
results on this argument (see[4, Th. 3.1]). We state beforehand a proposition
which allows to re-write in a better way the above cited Theorem 3.1 of [4]. In
particular we show when d — ¢ — ¢ attains the maximal value ¢’ — 1 (it is clear
that d — £ —t < —1since d — ¢ —t ¢ S, by definition).

Proposition 2.5 The following conditions are equivalent:
(1) e+ —2<2d.

(2) d—t—t=—1.

(3) e+ —2=2d—t.

If these conditions are satisfied then ¢ <d—t <d.



Proof. (1) = (2), Let ¢/ :=2d — (¢ + ¢ — 2), (¢ > 0 by assumption). Hence
d—¢—c+1=t;andsod>d—-t' =c+4/—-1>¢c. Thend—-t € 8S.
Moreover d — ¢ —t' = ¢ —1 ¢ S, hence t' > ¢ (2.2). If ¢’ > ¢, one has
d—C—t>d—{—t =c —1, thend—{—t > d, impossible. It follows ¢’ = t,
ie.d—l—t=c -1

(2) = 1). If (2) holds, since c=d+ £+ 1,thenc+c —2—-2d=d+{+ 1+
d—0—t—1-2d=-t<0.

(3) <= (2) is obvious recalling that ¢ = d + ¢ + 1.

Finally, if (1),(2),(3) hold, then d —t=¢ +¢—1,andso ¢ <d—-t<d. o

Example 2.6 The vice-versa of last statement in (2.5) doesn’t hold in general:
in the following semigroup we have ¢ <d—t¢<d,but c+c —2 > 2d.

S = {0,25.,26,27, 28,29, 32., 33, 34, 35, 36, 37, 384, 48, — .

Here: (=9, d—t=33, t=5, c+cd —-2=78>2d="76.

(Further s, = 71 = 2d — t according to next Theorem 4.1).

The following lemma gives some relations on the elements of S and shows that,
under suitable assumptions, certain elements can be greater than the conductor.

Lemma 2.7 Let S be as in (2.1) and let s € S. The following facts hold.

(1) d—d<e—t—-1, c—c <e, ¢/ —d <e, £L<e—1.

(2) c+d—-2>2d < d—-¢ < (-2.

(3) Letc+c —2>2d. We have: d—c <e—3 and if S is non-acute, then:

(a) 2d >ec.
b) d—t<d = 2d —¢>c.

d) If d—t<s<d, then: s—{€S.

(b)
4) (¢) s+l1—c=s—4{4—d.
(d)
(e) If s—deSand d—t<s—d<d,thens>cands+1—ce€S.

(5) Assume S non-ordinary, then:

(f) 2¢ > ¢ and either d =0 (i.e. ¢ =e) and the equality holds (also,
S is acute), or d' >0 and 2¢ >c+2.

(9 d—t>e.

Proof. (1) We have d — ¢’ < e — 1, otherwise d — ¢’ > e would imply ¢ = ¢;
consequently ¢’ + e > ¢ since ¢ + e € S. Now to get the first inequality, write
c+e>d+/l+1. Further ¢ —d’ < e, otherwised’ < d'+e < ¢, withd +e €S,
impossible by definition of d’.

Finally ¢ < e because d+ ¢ =c—1and d+ e > ¢ (in fact d + e € ).

(2) follows from (1), by substituting ¢ =d + ¢+ 1.

(3). When ¢+ ¢ —2 > 2d, by (2), (1) we have d — ¢’ <{£—2, { <e—1, hence
d—c <e—3.



(a). Since ¢/ —d < e, by (1), and d — ¢’ < e — 3, as just proved, we get:
() d—d <2e-3.
Now suppose S is non-acute. Note that obviously one has
either d =0, or ¢/ <2d' <d, or 2d" > c.
If d =0, then ¢/ = e and so S is acute, (because ¢ <e—1, by (1)) against the
assumption. If the second case holds, let d =pe+h, p > 1, 0 < h <e. By (%)
we have: pe+h = 2d'—d’ < d—d' <2e—3. Then p =1 and by (1) it follows that
d<2d =2e+2h<d<c<c +e,
therefore e >c—c =d+0+1—-c">0+1+2e+2h—C.
From this last chain and the assumption S non-acute we obtain a contradiction:
e—h—Q2e—d)>l+1+h
e—h—_2e—-d)=c—-d <Vt
It follows that 2d’ > c.

(b). When d —t < d’, we have d’ — ¢ € S, by definition of ¢ (2.2). Thus,
2d' — ¢ =d + (d —¢) € S; further by (a), we have 2d’ > ¢ and so 2d' — ¢ >
c—0=d+1. It follows 2d' —¢>c.

(4). (¢), (d) are clear by the equality ¢=d+ ¢+ 1 and by the definition of ¢.

To see (e): by (¢), s+ 1—c¢=s—£—d, then apply (d) to s — d.

(5). (f). If S is non-ordinary we have ¢ > e, thus 2¢' > ¢ +e > ¢, by (1).
Now, if d > e, thenc >e+2andso2d =c +c >c +e+2>c+2.

(9). If d—t =0, then either ¢ = e and S is ordinary, or d — ¢t < e < d, so

that e — £ € S, by definition of ¢ (2.2), impossible by item (1). <

Theorem 2.8 [4, Th. 3.1] With Setting 2.1, let S be a non-ordinary semigroup.
Let m, t be as in (2.2). Then

(1) If eitherc+c'—=2>2d and 0 <t <2, orc+c —2 < 2d, then m = 2d—g—t.

(2) If t=3or t=4, then m<2d—g—t and
m=2d—g—t<={d—1,..,d—t+1}NS#{d—-t+1}.

(3) If t>5 then m<2d—g—4. The equality holds if and only if
{d=1,d—2,d—3)NS={d—2} and (d—4€S < d—(—4¢€8).

Proof. If ¢4+ ¢ — 2 < 2d, we have c+ ¢ — 2 =2d —t by (2.5), and the equality
m =2d —t — g, by ([4, Th.3.1.1]). The other cases are proved in [4, Th.3.1]. ©

3 Preliminary results.

In order to improve the results of theorems (2.3) and (2.8), we shall analyze
the sets N(s;) (see (2.1)) in detail. Since either for ordinary semigroups or for
elements greater then 2¢ all is known, in what follows we shall always assume
S non-ordinary and consider N(s;), only for elements s; < 2¢ — 1. First we
introduce some new notation and prove some technical facts.

Setting 3.1 Let s; € S and let N(s;) = {(z,y) € S? | x +y = s;} as in (2.1):
o S'i={reS|r<d}=100,d]NnS.



o Alsi) = A{(z,9),(y,2) € N(si) |z <, ¢ <y <d};

further denote by a(s;) = #A(si41) — #A(S:)-
o B(si) =={(z,y) € N(s) |(z,y) €[ d]* };  B(si) = #DB(si+1) — #B(si).
o C(si) :=={(z,y) € N(s:) |(@,y) € [0,d'* }; (s:) = #C(si11) — #C(s1).
o Ac(si):={(2,9), (y;2) € N(si) | ® =} 6(si) := #Ac(si41) —H#Ac(s0)-

When s;11 = s; + 1 (e.g, for s; > ¢), we shall often omit indexes, as well we
shall write respectively «, 3,7, when no confusion arises.

Remark 3.2 (1) With the above Notation 3.1, we obtain

N(Sl) = A(Sl) U B(Sz) U C(Si) U AC(Si)
where the union is disjoint. Therefore to calculate v(s;+1)—v/(s;) we shall use the
equality: Vlsis1) — v(s:) = alsi) + Bls:) +1(s) +3(s1).
As we shall prove later, the above summands can be easily known for each el-
ement s; € S, with the exception of 7(s;); in fact the subsets C(s;) are quite
difficult to manage if s; < 2d’. For this reason, when s; < 2d’ we can evaluate
v(s;+1) —v(s;) only in particular cases; on the other hand we are able to calcu-
late v(sj+1) — v(s;) for s; > 2d'.
(2) For the pair (0,s;) of N(s;), note that: (0,s;) € A.(s;) if s; > ¢, while
(0,8;) € A(s;) if ¢ < s; <d, and (0,s;) € C(s;) in the remaining cases (s; < d’).

Lemma 3.3 Let s; € S and let A(s;), a(s;) be as in Setting 3.1. Then:
(1) If either s; < ¢, or s; >d+d, then A(s;) = 0.

-2 if (sig1—c ¢S5 and s, —de S’

N .| either (siy1—c ¢85 and s;—d¢ S’

(2) alsi) = 0 if or (siq1—c €S8 and s;—de S’
2 if (sig1—c €S and s, —d ¢ S).

Proof. First note that for each s € S and for each (z,y) € A(s) we have x # y
because  A(s) = {(z,y), (y,2) € S? |z +y=3s, z < d, ¢ <y <d}.
(1). It s; < — 1, A(s;) = 0, by definition. If x +y =5, >d+d’, and x < d’,
then y > d. Hence s; > d + d’, implies A(s;) = 0.
(2). Case (a) - If ¢ =d, then (2) holds because we have
A(si) C{(si —d.d),(d,si —d)}, Alsiv1) € {(sit1 — d,d), (d, siy1 — d)}.
Case (b)-If ¢ <d—1, denote by iy € IN the index such that s;, = ¢.

We divide the proof in several subcases.

-If i <idg—2, then A(s;) = A(siy+1) = 0 and «(s;) = 0, so (2) holds
because we have ;41 — ¢ ¢ S',s;, —d ¢ 5.

-If i =14dp—1, then A(s;)) =0, A(si+1) = A(d) = {(0,¢),(¢,0)}
and «(s;) =2, so (2) holds because s;41 —¢' =0€ S5, s, —d ¢ 5.

-If ¢ <s;<d-1, then s;41 = s; + 1, hence for each (z,y) € A(s;), with
¢ <y<d-—1,onehas: (z,y) € A(s;) < (z,y+ 1) € A(si+1). Now call
A= (@), (2) € Alsy) | & <y <d—1},



A" = {(z,y+1),(y+1,2) | (z,y) € A'}. Clearly #A’ = #A”, further we have
A'U{(si—d,d),(d,sifd)} Zf Sl'*dGS/

Alss) = A if si—dg¢s'
A" U{(si11 =, ), (¢,8i01 =)} if sip1—cd el
A(siv1) = AV if si1—c @8 "

Then (2) is true.
-If s, =d, then s;41 = ¢, A(s;)) = {0,d),(d,0)} and we are done since
from the inequalities 0 <+ 1=c—d<c— <e (2.7.1), we deduce that
0 if d#c—e
Alsi) = {(d,e)(e,d)} if d=c—e.
-If ¢e<s;<d+d —1, then proceed as in case ¢’ < s; <d— 1.
-If s, =d+d, then A(s;) ={(d',d),(d,d")}, A(s;y1) =0, by (1), so that
a(s;) = 2 and assertion (2) still holds because d+d' +1—¢ ¢ S’ (see (1)).
-If s; >d+d, then A(s;) = A(si+1) = 0, a(s;) = 0 and (2) is satisfyed
since s;, —d ¢S and s;11 —c ¢ 5 (see (1). o

Lemma 3.4 For s; € S, let B(s;) and ((s;) be as in (3.1) and let iy € IN be
such that s;;, = 2c'.

(1) If d’ > 0, then s;;,—o = 2¢ — 2.
(2) If s; <2, or s; >2d, then B(s;)=1.

0 if s <8iy_2 or s >2d
(3) B(si) = 1 if s,-1<s<cd+d-1
-1 if Jd+d<s;<2d.

Proof. (1) follows by (2.7.5).

(2). Since by definition B(s;) C [/, ..,d]?, obviously for s; < 2¢/, or s; > 2d one
has B(s;) = 0.

(3). The first case is obvious by (2).

- For the case i = iy — 1, i.e. 8,11 = 2¢, clearly we have B(s;) = (), while
B(2d)={(cd,)}. Thus g = 1.

-If 2¢ <s; < +d—1, recall that 2¢’ > ¢ for every non-ordinary semigroup
by (2.7.4). Therefore if s; > 2¢/, then s; +1 = s;41. Now let s; = 2¢/ + h,
with 0 < h <d—c —1. Then:

B(s;)) ={(,d +h),(d +1,d +h—=1),...,( +h,)}

and so #B(s;) = h-+1, #B(s;+1) = h+2, B(si) = #B(si+1)—#B(s;) = 1 .
SIf d+d<s;<2d, let s;=2d—k, with 0 <k <d-—c. Then

B(s;) ={(d—k,d),(d—k+1,d—1),...,(d,d—k)}
and so, #B(s;) =k+1, #B(s; +1) =k (in particular for k = 0, note that
B(s;) ={(d,d)}, B(s;+1) =0). Hence B(s;) = #B(s;+1)—#B(s;) = —1. o
By the definition of C(s) one immediately obtains the following equalities.

Lemma 3.5 Let s € S and let C(s) be as in (3.1). We have:



(1) If s>2d +1, then C(s)=0 and ~(s)=0.
(2) C(2d') ={(d',d")} and ~v(2d')=—1.

Example 3.6 This example shows that for s < 2d’ we can have C(s) # (). Let
S = {0,10,,11,12,134,154,20. —} For s = 2d' — 4 = 22, we have C(s) =
{(10,12), (11,11), (12, 10)}.

Lemma 3.7 Let s; € S and let Ac(s;), 0(si) be as in Setting 3.1. Then:
(1) Ac(si) =0 <= s, <c.
0 <~ Si+1 — C ¢ S

) <s < —1:
Zf O<si<2c—1 2 < Si+1—C€S
if s >2c: 1

(2) d(s:) =

Proof. (1) is obvious: if s; = ¢+ h > ¢, then (s;,0) € A.(s;).
(2). For s; < d, we have s;11 —c ¢ S, and we are done. If s; = d, then s;11 = ¢,
hence A.(d) = 0 by (1), A.(c) = {(0,¢), (¢, 0)}.
For d < s; < 2¢ — 1, since s; > ¢, we have s;11 = s; + 1, thus let s := s; and
let X(s):={(z,y) € Ac(s) | > ¢} C Ac(s): we write X (s) + (1,0) in order to
mean the set {(z,y) + (1,0) | (z,y) € X(s)}. The statement follows from the
inclusions

X(s)+ (1,00 S X(s+1) C(X(s)+ (1,0)) U{(c,s +1—¢)}.
In fact for each pair (¢c+h,y) € X(s), one has (c+h+1,y) € X(s+1). Further
for each pair (z,y) € X(s) one has x # y, otherwise t =c+h=y=s—c—h
would imply s = 2¢ + 2h > 2¢, which contradicts the assumption s < 2¢ — 1.
Hence #A.(s) = 2(#X(s)) = 24#(X(s) + (1,0)) and (2) holds.
When s; > 2c¢ the result follows by a direct computation, because in this case

N(s;) = Ac(Si). o

Remark 3.8 Since we shall use deeply the preceding lemmas (3.3),(3.4),(3.5),
it is convenient to note that in the case s < 2d < c+c¢ —2, sinced —£ < ¢ —2
(2.7.2), wehave s+1—c € S <= s+1—ce€ S Infact s+1—c=s—{—d < d—/.
Moreover for s < 2¢' —2we have s +1—-c € S < s+ 1—¢ € 5" and the
same holds for s — d.

As follows by lemmas (3.3),(3.4),(3.5),(3.7) and Remark 3.2, for each element
s; € S the difference v(s;+1) — v(s;) can be easily described in function of ~.
This is shown in next Theorem (3.10), by means of a series of tables.

Setting 3.9 Let ' = {s € S| s < d'} as in (3.1). In the following tables for
an integer r we write respectively “x” ifre S, “O7” ifr¢ S’

Theorem 3.10 With setting (3.1) and (3.9), let iy € IN be such that s;, = 2¢'.
The following tables describe the difference v(s;41) — v(s;) for s; € S, s; < 2c.



(a) If i <iy—2 (hence s; <2 —2), then 3 =0,

sit1—c si—d siy1—c  a B 8 v(sit1)—v(si) |
¢S o O 0 0 0 y
¢S x o -2 0 0 N =2
¢S O X 2 0 0 v+ 2
¢S X X 0 0 O vy
€s o o 0 0 2 v+ 2
€s o) x 2 0 2 v +4
€s x o -2 0 2 5
es X X 0 0 2 v+2

(0) If s; € [si,-1,¢ +d—1]NS, then siy1—c ¢85, f=1,

Siv1—¢ si—d siy1—c o B 8 v(siy1) —v(si)

€s o O 0 1 2 y+3
€s x o -2 1 2 y+1
¢S o) o 0 1 0 y+1
¢S x O -2 10 -1

(¢) If sie[d+d,2d NS, then s;,+1€S8, s;,—d¢ S, s;,+1—-c ¢,

[ si+1l—c si—d si+1—¢ a B v & v(si+1)—v(s;)
es O O 0 -1 0 2 1
¢S O O 0 -1 0 0 -1

(d) If s e[2d+1,2¢—1]NS, then s;,+1€S, s;,—d¢ S, s;+1—-c ¢ 5,

[ sitl—c si—d s+1—¢ a B v & v(sitl)—v(s)
es O O 0 0 0 2 2
¢S o O 0000 0

Proof. It follows by ((3.3),(3.4),(3.5),(3.7)). In case (b), we have s; + 1 € S by
(2.7.4) (recall: in this section we assume S non ordinary). In cases (c), (d) one
has s; —d ¢ S', because s;, —d > . ©

For s; > ¢ +d we know v(s;+1) —v(s;) by Theorem 2.3 and by items (c),(d)
of Theorem 3.10 above. Now we shall achieve the answer for 2d’ < s; < ¢’ + d;
when 2d'+1 < s5; < ¢/ +d, since 0 < B(s;) < 1,y =0, it is convenient to express
the difference v(s;11) — v(s;) in function of the parameter §.

Theorem 3.11 With setting (2.1),(3.1),(3.9),let S be a non-ordinary semi-
group and let s; € [2d',¢’ +d —1]NS. Then the difference v(s;11) — v(s;) can
be evaluated as follows.

(1) Let s; =2d'. Then: =0, y=—1 and



I Si+1 —C  S§; — d Si+1 —c « ﬂ Y 1) I/(Si+1) — Z/(Si) i
¢S x O -2 0 -1 0 -3
¢S X X 0 0 -1 0 -1
¢S o o 0 0 -1 0 -1
es X O -2 0 -1 2 -1
¢S o X 2 0 -1 0 1
€S X X 0 0 -1 2 1
es O O 0 0 -1 2 1
| €8 o x 2 0 -1 2 3 |

(2) Assume that 2d' +1<s;<c +d—1. Then: f€{0,1}, v=0 and

Sit1—¢ Ssi—d sip1—c¢ a0 v(sit1) —v(si)
¢S X O -2 0 0 -248
¢S x x 0 0 0 3
¢S o o 0 0 0 3
¢S O x 2 0 0 2+
€S x o -2 0 2 3
€S x x 0 0 2 248
€S o o 0 0 2 2+
| es © x 2 0 2 4+5

Proof. The theorem follows by (3.2),(3.3),(3.4),(3.5),(3.7) and Th.3.10. ©

4 New evaluations or bounds for m.

By Theorem 2.8 we know that m = 2d — t — g under suitable conditions, but
this equality is not true in general. However when d — ¢t > d’, we always have
m = 2d —t — g: this is proved by the following theorems (4.1) and (4.2).

4.1 The case d—t>d'.

Theorem 4.1 Let t, m be as in (2.2). If ¢ <d—t<d, then s, =2d—t.

Proof. Let s =2d —t + h, with 0 < h < t. In this case ¢/ +d < s < 2d and so
s+1eS. Further s+1—c¢ €S <= h > 1 by the definition of ¢ and by (2.7.4).
Then we have the result by (2.3) and by table 3.10.(c). <

Theorem 4.2 Assume d—t < d'. Then d > 0 and the following relations hold
(1) sy <d+d'.
(2) sp=d+d = d-t=4d.

Proof. First note that d —¢ > e (2.7.5), hence ' > d —t > 0; thus d+d' > ¢

and for s; € [d+ d’,2d], we have s; +1 € S.

(1). By (2.3.2) it suffices to prove that for every s; € [d + d' + 1, 2d] we have:
v(Sit1) > v(s;).



- For d+d'+1 < s; < ¢ +d—1, we achieve the proof by using table 3.11.(2).
In fact we have a =0, 8 > 0, by (3.3), (3.4) and so we are done.

-For ¢ +d <s; <2d, we get v(s;r1) = v(s;) + 1 by table 3.10.(¢): in fact
s; —d € S (since ¢ < s; —d < d) and the assumption d — ¢t < d’ assures that
d—t < s; —d < d. Therefore s;11 —c € S, by (2.7.4).

! - !

(2) Let s = d+d'; we shall prove that { ZEZ I Z, I B ; ZE;%: ZZ Zﬁ i < le’.
Clearly we have 2d'+1 < s < +d—1 and s—d € S’; further s+1—c=d —/,
so: stl—c¢S<—=d-t=d ( by (2.2) and (2.7.4)).
Finally, s+ 1— ¢ ¢ S, because s + 1 — ¢’ > d’ + 1; hence we are in the first or
in the fifth row of table 3.11.(2) and we are done because § € {0,1}. ¢

4.2 The case d—t < d'.

Now we shall assume d —t < d’: we already know that s,, < d + d' (Th.
4.2). In this case we can have s, # 2d —t. For example, if ¢ = 4 and
{d-=1,d—2,d-3}NS ={d—3},onehas: d—t=d—-4, d =d—-3 and
m < 2d — g — t, by (2.8.2). This example can be generalized: in fact we shall
prove that m < 2d—t—g whenever 2d'—d <d—t<d',c =dandd—t+1€ S
(4.6).  We shall estimate the difference v(s;+1) — v(s;) for each s; > 2d’ by
using the tables (1), (2) of (3.11). Note that in the case d — ¢t < d’, we have
¢+ —2>2d by (2.5), moreover we have t > 3 and so S is non-acute (2.3.4).
Therefore, by Lemma 2.7.3, 2d’ > ¢, and for each s € S, s greater or equal to
2d', we have s+1 € S. At first (3.10) and (3.11.2) give easily the next corollary.

Corollary 4.3 (1) Let s; € S, and let 2d'+1 < s; < +d—1. The following
conditions are equivalent:

(@) v(sit1) <v(si).
(b) sit1—c¢ S, si—de S, sip1—c ¢S5
(2) If s, €8, 8,>2d +1 and s;11 —c€ S, then v(s;) < v(siy1).

Proof. (1) is immediate by (3.11.2), since we have 8 € {0, 1}.
(2) It follows by (1) for s; < ¢’ +d; for s; > ¢ +d, see tables (c), (d) of (3.10)
and (2.3.2). <

Theorem 4.4 Assume d—t <d'. We have:
(1) If d—t>2d —d:

either d—t=2d' —d
or  d—t>2d —d and 2d—t+1—-c ¢ 5.

(b) sm < 2d—t in the other cases: (2d—t+1—c € S' and d—t > 2d'—d).

(a) s$m=2d—t if

(2) In case (1.b) consider the set
X:={seSn2d +1,2d —t—1] | s verifies conditions 4.3.(b)}. Then:



(¢) 2d'+1< s, <2d—t if and only if X #0;
in this case s, is the mazimum of X.

(d) sm =2d" if and only if X =0 and 2d' verifies one of the first four
rows in table 3.11.(1).

(e) sm < 2d’ in the remaining cases.
B) If d—t<2d —d:

(f) sm <2d,
(9) sm=2d < (2d' —de S << 2d'+1—ceS)and 2d +1—- ¢ S.

Proof. (1). When d — t < d’, we know that s, < d+ d’, by (4.2) . We start by
considering the elements s € S such that 2d — ¢t < s < d + d’; thus let
s=2d—t+k with 0<k<d —(d—t).

Suppose 2d —t > 2d’.

-If k> 0, we claim that v(2d—t+k) < v(2d—t+k+1). First notice that
(x) 2d' <2d—-t<s<d+d by the assumptions;
(#%) s—deS = s+1—ceSby(274);in fact,d—t < s —d < d.
Now the claim follows by (4.3.1)

-Ifk=0,ie. s=2d—t, then: s+1—c¢ S, s—d=d—teS".
If s>2d,then by (4.3.1),v(s+1)<v(s) <= s+1—-c ¢ 5.
Then (a) and (b) follow.
If s = 2d', then s verifies one of the first two rows of table 3.11.(1) so that
v(s+1) <wv(s).
(2). Suppose 2d’ < 2d —t and s, < 2d —t. Then: (c) is immediate by (4.3.1);
(d) follows from (c) and table 3.11.(1).
(3). Suppose 2d —t < 2d'. f 2d' < s < d' +d,thend—t < 2d —d < s—d < d;
andsos—deS = s+1—ce S by (2.7.4). Then: if s > 2d’, (f) is proved
by (4.3); if s = 2d’ one obtains (g) by table 3.11.(1). o

When d — t < d’, Theorem 4.4 gives upper bounds for s,, and the exact value
under certain assumptions, in particular when 2d — ¢ = 2d’. For the remaining
cases we obtain more precise estimations of s, in some special situation (see

Corollary 4.6).

Lemma 4.5 Suppose 2d —t < 2d’' (so,d—t < d' —1). Let s € S be such that
2d—t+1<s<2d andlet C(s) be as in (3.1). Then s > ¢ and

(1) If (z,y) € C(s), thenx >d—t, y >d—t.

o iy ; d—t+1<s—d < d
(2) The following inequalities hold: { d—t+2<stl_d<d.
(3) Moreover if [d—t+1,d —1]NS =0, then

(= [0 i 2d-tl<s<2d -2
Y= if s=2d —1.



Proof. We have 2d —t € S, 2d —t > d (by 2.7.5), and so 2d —t > c.

(1) is easy.

(2). Wehave: d—t+1<s—-d<s—d <d.

(3). Suppose now that [d—t+1,d' —1JNS =0 and let 2d —t+1 < s < 2d' —1.
. <od

Then: C(s)=0, C(s+1)= { {(d,?d,)} z; - ;2, g

in fact, if (z,y) € C(s) (resp. C(s+1)), with 2,y < d’, then d—t < z,y < d’ by

(1), impossible by the assumption [d —t+1,d" — 1] NS = (). Further by (2) and

the assumptions we have: s —d' ¢ §’, and also s +1—d' € §' < s=2d" — 1.

Then the result follows. <

Corollary 4.6 Suppose d —t <d' — 1.

(1) If d—t<2d—-d—1 and [d—t+1,d —1]NS =0,
o2d  if 2 +1—c¢S

then sm =\ 94t if 2d'+1—ceS8.

sm=2d—t if d—t+1¢S
(2) Ifd—t>2d —d and ¢ =d, then s <2d—t if d—t—&—lgS.
Proof. (1). By (4.4.3.f), we know that s,, < 2d’. Since by the assumptions
wehave d—t < 2d —d < 2d +1—-d<2d +1- <d, by (4.4.3g) we get
Sm=2d <= 2d +1-c¢S5.

Suppose s, < 2d: if s € S and 2d —t < s, then s > ¢ (see the proof of (4.5))
and so s+1 € S. Now for 2d —t +1 < s < 2d’, we have s < 2¢/ — 2 and so
v(s+1) > v(s) by table 3.10.(a), because s —d ¢ S’ and v > 0 by Lemma 4.5.3.
Now it suffices to show that v(2d —t+1) < v(2d —t). We have: o y(2d—1t) < 1.
To see this fact, note that:

0 ifd—t#2d —d—1

CRA=T+D) =\ @ )y ifd—t—2d—d—1.
In fact, clearly, (z,y) € C(2d —t+1) =2z >d—t, y > d —t (otherwise,
x <d—t=y > d, impossible); then, z < d' = d —t < x < d’, impossible
since [d —t+1,d' — 1] NS = 0. Finally, if z = d’, then
d—t<y=2d—t+1—d <d (by assumption) and soy = d’, 2d —t =2d' — 1.
Now, for s := 2d — t we have:

s+l1—c¢S, s—d=d—teS, s+1-c ¢S5

(s+1—c ¢ S, because d—t+1 = s+1—d < s+1—¢' < 2d'—¢ < d'). Hence by the
second row of table 3.10.(a), and since v < 1, we get v(s;41)—v(s;) =v—2 < —1.
(2). Under these assumptions, 2d —t+1—¢ = d — ¢+ 1. Then the result
follows by (4.4.1a). <

Example 4.7 When either of the assumptions [d —t 4+ 1,d’ — 1] NS = @ and
¢ = d does not hold, the statements (1), (2) of (4.6) are not always true, as
the following examples show.

(1) Let S = {0,22,,27, 28,30, 31a, 32, 33, 354/, 384, 44, — }. (Here (4.6.1) fails).
We have 69 = 2d—t = 2d' —1, [d—t+1,d' —1]NS # 0. By (4.4.3) we know that
Sm < 2d' — 1 =69 < 2¢" — 2. Moreover v(70) > v(69), by table 3.10.(a). In fact



for s =69 we have: s+1—¢c=26¢ 5, s—d=31e85 s+1-c=32¢¥
and v(s) = 1 because C(69) = 0, C(70) = {(35,35)}. Hence s,, < 2d’ — 1. One
can verify that s, = 68, with v(68) =8, v(69) = 6.

(2). (a) Let S=1{0,18,,21,22,24,254_¢, 274, 29,304,36. —} ({ =t =5).
Here: 55 =2d—t > 2d' =54, ¢ #d,d—t+1 ¢ S. Since 2d—t+1—¢ =27 € 5,
we have s, < 2d—t = 55 by (4.4.1b). One can verify that s,, =54 = 2d—t—1,
with v(54) =9, v(55) = 6.

(b) Let S=1{0,18.,21, 22,24, 25,1, 264,290,304, 36. —} (£ =t = 5).
Here: ¢ #d, d—t=25>2d —d=22, d—t+1¢€ S and s,, =2d—1t by
(4.4.1a), with v(55) =8, v(56) = 6.

In next corollary we collect all the cases that give s, = 2d —t.

Corollary 4.8 With setting 2.1, let t,m be as in 2.2. Then s,, = 2d —t in the
following cases.

1)
(2) For 2d —d<d—-t<d : ifand only if 2d—t+1—c ¢ S".
3)

(
(4) If d—t<2d —dand|[d—t+1,d —1]NS =0 : if and only if 2d'+1—c € S.

If d—t>d.

Ifod—d=d—t(<d).

All the statements of (2.8) can now be easily deduced by (4.1),(4.2),(4.4),(4.6).
To exemplify, in part (1) of next Corollary we derive explicitely the results in
case t > 5.

Corollary 4.9 Ift > 5, then

(1) sm < 2d—4 and the equality holds if and only if
(d—1,d-2,d—3)NS={d—2} and (d—4€S < d—(—4¢€8).

(2) Whend—t>2d —d, then s, < 2d —t.
(3) Whend—t < 2d —d, then s, < 2d < 2d—6.

Proof. If d =d—2,then ¢ =d, d—t < 2d —d =d— 4. It follows (4.4.3):
Sm<2d—4and s, =2d—-4 <= (d—-4€S < d—{(—-4€S)andd—3¢ S.
Then: s, = 2d — 4 if and only if {d — 1,d — 2,d — 3} NS = {d — 2} and
(d—4eS<—=d-—(—-4€5).
If d < d — 3, we have to consider two cases:

when d —t > 2d’ — d, then s, < 2d —t (4.4.1),

when d —t < 2d’ — d, then s, < 2d' <2d —6 (4.4.3).
This proves the corollary. <

Example 4.10 When ¢ = 3, or t = 4, the cases still unsolved correspond
exactly to the situation [d—t+1,d—1]NS = {d —t+ 1} already considered in
(2.8): for instance let ¢ = 3. This condition means ¢’ =d and d' = d — 2. So we



are in case (1.b) of Theorem 4.4. Then by (4.4.2) one can easily verify that
Sm=2d=2d—4<—d—-{(—-4¢ Sandd—4€S8.
In the remaining cases: s,, < 2d — 5. For ¢ small, we are able to find s,, by a
direct computation. We show the results for t = ¢ = 3.
In this case d —5€ S, d—6 ¢ S and
if d—4¢5, then s, =2d—5
if d—4€S,d—0—-4=d—-7¢S5, then s, =2d—4
. d—8¢ S = s, =2d—5
if d—4€S, d—0—-4=d-T€S, then[ d—8cS —> s, =201
Hence s, > 2d — 7 = 2d’ — /¢ for each S with t = ¢ = 3 and the lower bound is
achieved by any semigroup such that
[d—8,cJNnS={d-8,d—7,d—5,d—4,d—3,d—2,d,d+ 4 =c}
Also for t = 3, £ = 4 one can verify that s, > 2d — 8 = 2d' — ¢.

Remark 4.11 In general, we have a feeling that the case d —t > 2d' —d, with
¢ =dand d—t+ 1€ S considered in (4.6.2) is the worst one in order to give
a lower bound for s,,. After many calculations we conjecture that in this case
we always have s, > 2d' — £ (recall that if s,,, # 2d —t, then d — t < d' by (4.8)
and so 2d' — £ € S by Prop. 2.7.3). We illustrate the situation with an example
which shows that we can have s,, << 2d — t.

S =1{0,31,32,33,34, 35, 36, 38,39,40,41,42,43,44,474_, 484,504, 61, —}
(6=10, t =3, 2d—t =97). One can check that s,, =88 =2d—t—9 < 2d' =
96, and v(88) =9, r(89) = 8. Note that in this case we have s, > 2d’ — ¢.

5 The case ¢ = 2.

Now we consider the situation ¢ = 2. In this case, for c+c¢ —2 > 2d and t > 3
a complete information on the integer m is not yet known. In this section we
find the integer m in function of the possible values of the parameter t. As a
consequence we deduce also the value of m for semigroups with Cohen-Macaulay
type 7 = 3 and for semigroups with e < 6. First we prove and recall some facts.

Lemma 5.1 Let 7 be the Cohen-Macaulay type of S. Then:
(1) If c—e<d <c—e+1, then S is acute.

(2) Every gap h > c— e belongs to S(1)\ S, in particular
{d+1,.,d+ ¢} ={c—4,..,c—1} CS1)\S.

(3) 7> and if T=1{, then ¢/ =c—e.

(4) Ift > 0, for each k € N, 0 <k <t—1 suchthat d—k € S, we have
e # 20+ k. Further

(a) If t>2 and ¢ <d, thene+#2(, e#2(+1,
b) If ¢ <d—-t<d, thene+#2(+k, foreachk € {0,....,t —1}.



Proof. Ttems (1)-(3) are proved in [4, 4.10 and 4.11].

(4). Let k be as above. Then: ¢c—20—k—1=(c—{(—-1)—k—{=d—k—(€ S
by (2.74). f e =20+ k, then ¢ — 1 — e € S, hence also ¢ — 1 € S, impossible.
(a) follows by applying (4): if ¢ < d, one has {d —1,d} C S. Also (b) is
immediate by (4). ¢

Proposition 5.2 Assume c+c¢ —2>2d and S non-acute. Then:
(1) d—d+2<t<e—-3-(d—{).
(2) e>54+2(d—), andif ee€{5,6}, then ¢ =d.

Proof. (1). The first inequality is proved in (2.7.2). In order to obtain the
second one note that ¢ > ¢ — e+ 2 (by (5.1.1), since S is non-acute and by
(2.7.1)). Then recall the equality ¢=d+ ¢+ 1.

(2) is immediate by (1). ©

Lemma 5.3 Assume ¢ =2. Then:
(1) e+ —2>2d — d=/.
(2) The following conditions

(a) c+c —2>2d and t>0,
B) & =d—2.
(¢) d=¢c andt > 2,

are equivalent and imply: t >3 < d—4€ S.

Proof. (1) follows immediately from (2.7.2) in the case £ = 2.
(2). (a) = (b). If (a) holds, we have d — 1 ¢ S (since ¢ = d by (1)) and
d—2=d—{¢e€S (because ¢t > 0); then d' =d — 2.
(b) = (c¢). The assumption d' = d — 2 implies:
d—1¢5, sothat ¢ =d;
d—f¢=d—-2¢€S. Thent>2.
(¢) = (a) follows by (1).
Further, if the conditions of (2) hold, then: ¢ > 2 and ¢t =2<«<=d—-4 =
d—0—2¢ S (becaused—f=d—2€Sandd—1¢ Ssinced=c). o

Lemma 5.4 Suppose £ = 2, t >3, {d—3,d—2} C S. Then one has:
[d—t—1,d—2]NIN C S.

Proof. By the assumption {d—3,d—2} C S, it is enough to show that d—k—1 €
S for 3 < k < t: we prove by induction that if [d — k,d — 2] "IN C S, then
d—k—-1€S. Since d—(k—1) € Sandk—-—1<t thend—k—-1=
d—2—(k—1)=d—-/¢—(k—1)€ S, by (2.74). o

Theorem 5.5 Suppose ! = 2. Then the parameter m takes the following values.



c+cd —2<2d, or
or t<2,
c+cd —2>2d and | or t=4
or t>5 and d—3¢€ 8.

(1) sm=2d—t if

either t=3 and d—6¢ S

— _ ; !
(2) sm=2d—4 if c+c —2>2d and £>5 and d—3¢ S,

(3) sm=2d—6 if c+cd—-2>2d, t=3 and d—6€ S
(all the remaining cases).

Proof. For the cases ¢+ ¢ —2 < 2d and ¢+ ¢ —2 > 2d with t < 2 see (2.8.1).
Hence from now on assume that ¢+ ¢ — 2 > 2d and ¢t > 3: again by (2.8) we
know that s, < 2d —3. By (5.3.2) S verifies:
d—1¢S8, d—2¢€S, d—4€S, ¢=d.

Further for s; < 2d — 2 we have B(s;) = B(s;3+1) =0 and B(s;) =0 (by (3.4),
since 2¢' —2=2d — 2 and d’ > 0).

Caset = 3. Since {d—1,d —2} NS ={d—2}, wehave m < 2d—4—g
(2.8.2). Further one has: d—5=d—-(—t¢ 5.
Consider s = 2d — 4; then s+ 1 —c=d — 6 and by (5.3) we have

s=2d, s—d=d—-4€S, s+1-cd=s5+1—-d=d—-3=d-teS.
Ifd—6 ¢ S one has v(s+1) < v(s) by the 2-nd row in table 3.11.(1), s,, = 2d—4.
If d — 6 € S one has v(s+ 1) > v(s) by the 6-th line in the same table. In this
second case consider s < 2d — 5: we have

C(2d—-6)={(d—2,d—4),(d—3,d—3),(d—4,d—2)}

C(2d—5)={(d—2,d—3),(d—3,d—2)}

C(2d—4)={(d—2,d—2)}.
Note also:

2d—6—d=d—6€ S, 2d-5—-d=d-5¢ S, 2d—4—c =2d—4—d=d—4 € S.
Then (table 3.10.(a)): v(2d —4) —v(2d —5) > v(2d — 5) + 2 = 1. Moreover
a(2d — 6) = =2, v(2d — 6) = —1; since §(2d — 6) = 0, 6(2d — 6) < 2 then we
have v(2d — 5) — v(2d — 6) < 0, and so $,,, = 2d — 6.

The case t = 4 and the case t > 5, d—3 ¢ S follow by (2),(3) of Th. 2.8.
Finally we have to consider

the caset > 5, d—3 € S: we already know that m < 2d — 5 — g by (2.8.3).
For s =2d — k, 5 < k <t we have s > ¢, since s > d+ (d —t) > ¢ by (2.7.5).
Further: d —t <d—k =s—d < d— 5; it follows that
d—t+1<d—-k+1=s+1—-—d=s+1—-c <d—4. Therefore:

s—delS, s+1-def, s+1—c=d—{l—-kebS, if k#t,

s+1—c¢ S if k=t (by Lemma 5.4 and by (2.7.4)).

Now by table 3.10.(a): v(s+1) —v(s) = Ws) if k=t .

v(s)+2 if k#t
The required result follows if we prove the
Claim. v(s) = —1 for each s =2d — k, 5 < k <.
Proof of the claim. If t =5 and d—3 € S, then ~(2d —5) = —1. In fact
C(2d—5)={(d—2,d—3),(d—3,d—2)}



C2d —4) = {(d—2,d - 2)}.

Ift>6and d—3¢€ S, since[d—t—1,d—2]NINC Sby (5.4) andd—1¢ S,

for each k € IN, 5 < k <t one has:
C@2d—k)={(d—2,d—k+2),(d—3,d—k+3),..(d—k+2,d—2)},
C2d—k+1)={(d—2,d—k+3),...(d—k+3,d—2)}.

Hence #C(2d—k+1)=#C(2d — k) —1, so that y(2d — k) = -1. o

As a first consequence we know the integer m for every semigroup S of multi-
plicity e < 6:

Corollary 5.6 (1) If e <4, then s, =2d—t.
(2) If e € {5,6}, then either £ =2 and Theorem 5.5 holds, or m = 2d—t—g.

Proof. If e < 4, we cannot have ¢+ ¢ —2 > 2d and ¢ > 0, by (5.2.1) and
(2.3.4). Hence either ¢+ ¢ —2 < 2d, or ¢+ ¢ —2 > 2d and ¢ = 0: the claim
follows by (2.8.1).

If e = 5,6, we can assume that ¢ +c¢ —2 > 2d and ¢ > 3, since in the other
cases the result follows by (2.8.1). Then, if e = 5, by (5.2) one gets ¢ = 2;

If e = 6, again by (5.2) it follows that ¢ € {2,3}. The case £ = 3, with ¢ > 3 is
impossible by (5.1.4), (applied with k£ =0). ¢

5.1 The case 7=3.

For a semigroup having Cohen-Macaulay type 7 = 3, Theorem 5.5 allows to
complete the partial results of [4, Prop. 4.16]. This is shown in the following
proposition.

Proposition 5.7 Suppose that S has Cohen-Macaulay type T = 3. Then
e >4 and

(1) Either Sis acute, or (( =2, d' = -2 and S(1)\S = {d—1,d+1,d+2}).
(2) When £=2, d =¢ -2 and c+ —2 > 2d, we have:
(@) S()\S={d-1,d+1,d+2}.
(b) t>max{2,e—4}.
(¢) If t>e—4, then e=5.
In particular, if t >3, then:
(d) t=e—4 andd—t—-3¢ 5.
() d—3€S.

Proof. (1). If 7 = 3 obviously e > 4, by the well-known inequality 7 < e — 1.
Further, by (5.1) we get £ < 3 and either S is acute,or £ =2, d > —2>c—e
(otherwise S is acute) that means d’ = ¢ —2, ¢/ =1 € S(1)\ S (since ¢ —1 ¢ S).
Hence (1) is true.



(2). First note that ¢/ = d by (5.3.1). This implies ¢t > 2 by (5.3.2).
Further d — 1 € S(1), since for each s € S\ {0}, one has
d—1+s>d—14e>d+3=c, thend—1+s€S.
Moreover {d + 1,d +2} C S(1)\ S by (5.1.2). Since #(S(1)\ S) =7 = 3, one
has S(1)\ S ={d—1,d+1,d+ 2} hence (a) holds.
) Ift <e—5,thend—¢—t>c—e infact d—¢—t =d—2—1t and
wegetd—{0—t>d—2—(e—5) =d+3—e =c—e. This fact implies:
d—{¢—te S(1)\ S by (5.1.2). On the other hand, by the assumption ¢ = 2, we
have: d — ¢ —t < d—2 < d— 1, that contradicts (a). It follows ¢ > e — 4.
(c) If t > e — 4, by (2.2) one has:
either (i) d—(e—4) ¢S5,
or (t5) d—(e—4)eSandd—{C—(e—4)€S.
When () holds, sinced— (e—4) =c+1—e, weget d—(e—4) € S(1)\S (see
(5.1.2)). Then, by (a), since d—(e—4) < d one necessarily has d+4—e=d—1,
ie, e=5.
It is easily seen that (i¢) cannot happen. In fact,d — ¢ — (e —4) =d+2—e =
c—1—-e¢Ss.
(d). Under the assumptions of (2), let ¢ > 3. Then we have also d — 4 € S by
(5.3). It follows that t = ¢ — 4. In fact by (b) above, t > e—4; butt >e—4
implies e = 5 (see (¢)), hence d+1 =d —4+e € S, absurd. In particular,
sincet =e—4,one hasd—t—3¢ S, otherwised+1=d—-t—-3+e€ S, a
contradiction. This proves (d).
To see (e), note that by (d),e—4 =t >3 = e > 7. Hence d —3 € S(1);
in fact for every s € S\ {0} one hasd —3+s>d—-3+7=d+4>¢, ie,
d—3+seS. Using (d) and (2a) we deduce that d—3 € S.  ©

Example 5.8 We show a semigroup which satisfies the conditions of (5.7.2):
S = {O, 76, 10, 14, 15d’7 17c’=d7 200 —>}

Then: £=2,d=¢, d—{(=15€ S, d=d—2=d—t, d—-(¢5, t=2.
Further, S(1)\ S = {16,18,19} andso 7=3, ¢+ ¢ —2 =35> 2d = 34.

Corollary 5.9 Assume that S has Cohen-Macaulay type T = 3. Then:

Sm=2d—4, if t=3and S is non—acute,

Sm =2d—1t in all the remaining cases.

Proof. If S is acute, by (2.3.4) we can use use (2.8.1). For the remaining cases,
ife+c —2<2d,see (2.8.). If c+ ¢ —2>2d, by (5.7) we have

or t=2,
(=2 t>2 and | t=3 and d—6¢ S,
or t=4,

or t>5 and d—3¢€ S,

then it suffices to apply Theorem 5.5. ¢
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