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Abstract

Let R be a one-dimensional, local, Noetherian domain. We assume R anali-
tycally irreducible and residually rational. Let w be a canonical module of R
such that Rc w ¢ R andlet fp:= R: w be the Dedekind different of R.

Our purpose is to study how 6p is involved in the type sequence of R and
to compare the type sequence of R with the type sequence of 6p (for the
notion of type sequence we refer to [11], [1] and [13]). These relations yield
some interesting consequences.

1 Introduction

Let (R, m) be a one-dimensional, local, Noetherian domain and let R be the
integral closure of R in its quotient field K. We assume that R is a DVR and
a finite R -module, which means that R is analitycally irreducible. Let ¢t € R
be a uniformizing parameter for R, so that ¢ R is the maximal ideal of R .
We also suppose R to be residually rational, i.e. R/m ~ R/t R.

In our hypotheses there exists a canonical module of R unique up to isomor-
phism, namely a fractional ideal w such that w: (w: ) =1 for each fractional
ideal I of R. We can assume that RCw C R.

The Dedekind different of R is the ideal 0p := R : w.

Let v: K — Z Uoo be the usual valuation associated to R. The image
v(R) = {v(z), x € R, x # 0} C IN is a numerical semigroup of IN.

The multiplicity of R is the smallest non-zero element e in v(R). The
conductor of v(R) is the minimal ¢ € v(R) such that every m > ¢ is in v(R)
and v := t°R is the conductor ideal of R. We denote by J the classical
singularity degree, that is the number of gaps of the semigroup v(R) in IN.



We briefly recall the notion of type sequence given for rings in [11], recently
revisited in [1] and extended to modules in [13].
Let n=c—4¢, and call sg =0,s1,...,8, = c the first n+1 elements of v(R).
Form the chain of ideals Ry D Ry D Ry D ... D R, , where, for each 17,
Ri:={z€R : v(z)> s}
Note that R= Ry, Ry = m , R, =~. Now construct the two chains:

R=R:RyCR: mCR:R C...CR:R,= R
0p =0p :RyClOp :m Clp :RoC...C0p : R, = R
For every ¢ =1...n, define
r, = ZR(R : RZ/R : Ri—l) = ZR(wRi_l/wRi),
ti = ZR( 9[) : Rz/ 9[) : Rifl) = ZR(w2 Rifl/w2 RZ)

The type sequence of R, denoted by t.s.(R), is the sequence [rq,...,7,].
The type sequence of Op , denoted by t.s.(6p ), is the sequence [t1,...,ty].
Observe that ry is the Cohen Macaulay type of R which is also the minimal
number of generators of w and that t; is the C. M. type of the R-module 60p),
or the minimal number of generators of w?. Moreover, for every i, we have
ri>r;>1 and t; >t >1 (seee.g. [13], Prop. 1.6, for all details).

We show in Prop. 3.4 that, if s; € v(60p ), then the correspondent r; +1 is
1. Hence, denoting by p the number of 1’s in the type sequence of R, we get
(see Prop. 3.7) the inequalities

d<(c=08)ri—pri—1) < (e¢=8)r —Ir(Op /7)(r1 — 1)

which improve the well known formula ¢ < (¢ — §)r; (see Remark 3.12).

A ring R is called almost Gorenstein ring if its type sequence is of the
kind [r1,1,...,1]; in the general case we focus our attention to the last ¢ such
that r; > 1, and we show its special meaning related to the blowing up of the
canonical module and to the Dedekind different (Prop.4.3).

We compare the two type sequences in several cases. For instance, in a ring
R of CM type 2 they can be completely determined by using the Dedekind
different (Prop. 4.10). Under suitable hypotheses we have that r; < t;, although
this is not always true. We conjecture however that r; < ¢; always holds and
we can prove this inequality in the following cases:

e R is almost Gorenstein (see Prop. 5.1);

e R has C.M. type 2,3, e—1 (see Prop. 4.10, Corollary 3.9, Prop.4.9 );
e Op =~ (seeProp. 4.8);

e R satisfies the inequality Igr(R/60p)(r1 —2) <26 —c (see Prop. 4.11).

In section 5 some results are achieved for minimal and maximal type se-
quences. In particular in Prop. 5.1, we prove that R is a almost Gorenstein
ring, (that is t.s.(R) is minimal), if and only if ¢.s.(6p ) is also minimal.

On the other side we prove in Prop. 5.4, that the t.s.(R) is maximal, i.e. of the

kind [e—1,....,e—1,e—1—a] for some a < e—2 or of the kind [e—1,....,e—
1, 1] if and only if ¢.s.(fp) is maximal, i.e. of the kinds [e,e,....,e,e — a,
[e,e,....,e, 1] respectively.



2 Preliminaries and remarks on the canonical
module

A fractional ideal of the value semigroup v(R) is a subset H C Z such that
H+ v(R) C H. We denote by ¢(H) the conductor of H, which is the smallest
integer j € H such that j+ IN C H. The number 6(H) := #[Z >p, \ H]
where hg = min{h € H} is the number of gaps of H. For any fractional ideal
I of R, v(I) is a fractional ideal of v(R). Further we set:

c(I) :==c(v(I)), 5(I) = 4d(v(I)), ¢ :=c(R), 0 :=9d(R).

We point out the useful fact that, given two fractional ideals Iy, Iy, Is C Iy,
the length of the R-module I;/I> can be computed by means of valuations:
Ir(I1/12) = #[v(I1) \ v(I2)], (see [11], Proposition 1).

Now we collect some of the properties of the canonical module which are
important in this context.

First we recall the following well-known:

Proposition 2.1 (see [8], [10], [12]) Let w be a canonical module of R such
that RC w C R andlet w** be its bidual, i.e. w** =R:(R: w). Then:

1) w:w =R

2) lg(I)J)=lg(w : J/w : I).

3) c(w)=c and v(w)={je€eZ | c—1-j¢ v(R)}.

4) w: R =n.

5) wCw™=w:wilp.

6) R is Gorenstein <= w =R < 0p =R << w = w™**~
Hence: R not Gorenstein — ~vC 0p C m.

7) If SO R is an overring birational to R, then w :S is a canonical

module for S.
Lemma 2.2 Let I be a fractional ideal of R.

i) If I O and v(I) C v(w), then there exists a unit uw € R such that
ul C w.
If v(I) =v(w), then ul = w.

11) There exists a unit u such that utc=<DJ c w.

€R

Proof. i) Wenotethat ] O v = w : I C R = (w : )R C R. The

hypotheses I 2 v and v(I) C v(w) imply that ¢(I) = ¢, hence [ : R =«

and [rp(R/(w :I)R)=Ir(I: R/w : R)=0. From the equality

R =(w :I)R we deduce that w : I contains a unit u of R and ul C w.

The second assertion is now immediate, since Ig(w /ul) = #[v(w)\v(I)] =0.
11) We can apply item ¢) to the fractional ideal te=e(N], because the

conditions t*=¢T D~ and v(t*= ) C v(w) are satisfied. 0O

A strict connection between the value sets of #p and w? is remarked by

D’Anna in [5], Lemma 3.2. Part iii) of next lemma is a slight generalization of
it.



Lemma 2.3 Let I be a fractional ideal of R. Let h,s€ Z, h>1. Then:
i) v(w:I)=v(w)—v{).
i) v(iw:I)={ye Z |c—-1-y¢v()}.
iii) s€v(R: wh ) «=c—1-s¢v(whl).
In particular:  s€v(fp) <= c—1—s¢v(w?).

Proof. i) The proof given in [13], Prop. 2.4, works also under our assumptions.
1) C Using ), we see that y € v(w : ) = ¢c—1—y ¢ v(I), since
c—1¢v(w).

D Let y€ Z besuch that c—1—y ¢ v(I), and let z € v(I). Again
by i) we can prove that y+z € v(w). Now c—1—(y+2)=(c—1—y)—z ¢
V(R) = y+zev(w).

iii) Observe that R: wh 11 = w : w"I, then apply ii). O

Lemma 2.4 Let I be a fractional ideal of R andlet J:=1: w. Then
i) J is a reflexive R -module, i.e. J=R:(R:J).
it) If J is not invertible, then m : m C J: J.
In particular, 0p is reflexive and m : m C 6p : 0p.

Proof. i) The inclusion J C R: (R:J) always holds.

To prove 2, observethat 2z(R:J)CR=—z(R:J) w C w =
tw Cw:(R:J)=w:(w:Jw)=Jw CT= 2z J

i1) It suffices to note that J not invertible =— J(R:J)# R =
JR:J)Cm=J:J=R:JR:J)D2R: m=m:m. 0

In the last part of this section we point out how 6#p brings some relations
with the bidual w ** and the blowing up of the canonical module.

Denote by B :=Up—o,...00 w™: w™ the blowing up of the canonical module
of R (independent on the choice of w ). This overring has been studied recently
in relation to almost Gorenstein rings (see [2], ch.3, [5], ch.3).

Remark 2.5 The ring B satisfies the following properties:
i) For m>>0, B= w™: w™ = w™. (See [5],3) .

i) B is a reflexive R -module.
In fact B=(w™: w™ 1) : w and we can apply Lemma 2.4.

i) yYCR:BC f0p.

w) w(R:B)=w :B=R:B.
Infact w(R:B)=w :(w:(w(R:B)))=w :B=w:wm™l=R:
wm=R:B.



’U) 9]3 : GD QB
Infact B=R:(R:B)=R: w(R:B)=60p : (R:B)2 6p : 0p.

Proposition 2.6 The following facts hold:
i) wCw*™*Cw CBCR.
i) lr(0p /v) =Ir(R/w?).
ZZZ) ZR(QJQ /w**) = lR(w QD/QD )
i) If R is not Gorenstein, then:
c(w?)<c(w™)<c—e.
c(w?)=c—e & ecv(bp).
Proof. i) w™*=R:(R:w)=w:w(w:w?)C 2
i) Since w :y= R and w : 0p = w : (
second property in Prop. 2.1, we get the thesis.
141) is immediate by Prop. 2.1.
w) j>c—e=c—1—j<e—1= ceither c—1-—35 =0 or

c—1—j¢ v(R). Hence jev(w)U{c—1} Cv(w™).
Finally observe that e € v(fp) < c—1—e ¢ v(w?) by Lemma 2.3. O

(w
2

W)= w
wf) = w

w .
w 2, using the

Since a ring is Gorenstein if and only if B = w, it is now natural to set
a characterization for the condition B = w?. The condition is always verified
by almost Gorenstein rings (see [2], Prop. 28). We point out that there exist
not almost Gorenstein rings with B = w?, for instance the semigroup ring
R= C[[t"]], h€ v(R) ={0,7,8,9,11,13, —}.

Proposition 2.7 The following conditions are equivalent:

i) w* s a ring.
i) w* = w?.
m) w 9D = 9D~

w) 9[) : 9[) = B.

v) R: B= 0p.
vi) B= w?.
Proof. i) = ii). In this hypothesis: w C w** C w2 C w w™™ = w**,

1) = #i) is immediate by Prop. 2.6.

1) =) wlp =0p = w™lp =0p = BC 0p : p and the
other inclusion always holds (see Remark 2.5).

w)=wv) 0p:0p =B — BOp CR — 0p C R: B and the other
inclusion always holds (see Remark 2.5).

v)=vi) Op=w:w?=R:B=w:Bw=w:B =
wi(w:w)=w:(w:B).

vi) =1i) Wp =w?lp Cw=—=w? Cw:wlp =w* = w*=B. 0



3 Type-sequences and length.

The number p of 1’s in t.s.(R), is related to the length of the R/m -
algebra R/60p and is involved in other interesting inequalities. First we show
(Prop. 3.4) how elements of v(0p ) giveriseto 1’sin ¢.s.(R), and in t.s.(6p ).
From this we get § < (¢ —d)r1 —p(r1 — 1) < (c—8)r —Ir(bp /y)(r1 — 1)
(Prop. 3.7) and we state other bounds.

Proposition 3.1 (see [5]) Let v(R) = {so =0,81,....60 = ¢,—}, n =c— 4,
and let t.s.(R) = [r1,.....,mn] and t.s.(0p ) = [t1,.....tn] be the type sequences
of R and 0Op respectively. Then:

i) c¢(0p : R;)) =c(R:R;) =c—s;, foreach i=0,....,n.
i) v(0p : Ri)<ce—s, = {c=1-b, b€ Z >, \v(w?R;)}, foreach i =0, ....,n.
iii) Let n;:=c(R:R;)—8(R:R;) andlet m;:=c(0p : R;)—Ir(R/0p :

R;), then:
1. 7i41 = Sit1 — Si + Njy1 — Ny, 1=0,...,n—1.
2. ti-i—l = Si+1 7Si+mi+1 — my, 7;:0,....,’/7,71.
n
3. Zi:l r; = 0.

4. Y ti=0+1r(R/0p ).

iv) Denoting by w; the canonical module w : (R : R;) of the overring R : R;
obtained by duality, we have: 1; = lp(w;/w;—1).

Proof. By Lemma 2.3 we have that: =z € v(0p : R;)) < c—1—2x ¢
v(w? Ry).

)If j>c—8, = c—1-j<s = c—1-—j¢v(wR) = je€
v(0p : R;)) Cv(R: R;). Moreover s; € v(wR;) = c—s;—1¢v(R:R;) by
Lemma 2.3.

i1) follows from the above considerations.

i41) For the first equality see [5]. The second one is analogous:
by definition and item i), m; ;1 = ¢ — 8,41 +Igr(R/0p : Riy1) and m; =
C—Si—l—lR(E/HD : Rl) Since lR(R/HD : Rl) —ZR(E/QD : Ri+1) = ZR(HD :
Ri11/0p : R;) = tit1, we get the thesis by subtraction. The other equalities
are immediate by definition.

iv) Apply Prop. 2.1,7): w;=w:(R: R;) =w: (w:wR;) =wR;. O

Proposition 3.2 Let t.s.(R) = [r1,.....,mn] and t.s.(0p) = [t1,.....,tn]. Let
xi—1 € m be such that v(zi—1) = s;i—1 < c. Then:

i) m=1<= x;1 € AnnR(w/(xi_lR—&— wRi)).

i) ri=1 = t; =1.



Proof. i) Since R;—1 = 2;-1R+ R;, we have wR;_1 = z;_ 1w + wR;.
Then r; = lR(sz;l/wRi) =1<«—= wR, 1=2, 1R+ wR;, —
Ti_1 € AnnR(w/(aji_lR—&— wRi)).

1) By hypothesis w R;_1 =2;,_1R+ wR; = W Ri_1 =xiqw+ w? Ry,
hence by Z), w? R,1=z, 1R+ w? R, — t;, = ZR(w2 Ri,l/wQ Rz) =1. O

Lemma 3.3 ([5], Lemma4.1) Let z1,...., 2. be any minimal set of generators of
w. Then, if v; € R and v(x;) = s;, the R-module w R;/w R;y1 is generated
by Triz1 + C()RiJrl,....,er‘Zr"_ u]RiJrl.

Proposition 3.4 Let t.s.(R) = [r1,....,7] and t.s.(0p) = [t1,....,tn] be the
type sequences of R and 0p respectively. Then:

S; € I/(GD) = Tit+1 = tiy1 = 1.

Proof. riy; =Ilg(wR;/wRiy1). Let w = (1,29,...,2) and let z; € Op
be such that v(z;) = s; < ¢. Then wR; =< x;,...,2;2, > mod w R;41, by
Lemma 3.3. Thus z; € R: w = x;2; € Ri11 C wR;4; forall j>1 (since
v(xizj) > 1) => 1,41 =1 and by Prop. 3.2 t;41 = 1. 0

Notation 3.5 We put:
pi=#[e{l,.,c—=08}| rn=1]
o:=Ilp(w/R) —Ir(R/0p)=20—c—Ir(R/0Op)

The invariant o has been introduced in [9]. It is known that o(R) > 0, when
r1 <3 or R is smoothable, but there are examples with o < 0 (see 4.12).

Lemma 3.6 The following facts hold:
i) Ir(0p /7) <p.
ii) c—0—p<Ir(R/Op)<c—34.
Qi) 30 —2c <o <36—2c+p.
w) c—p< >t <ec

Proof. i) follows from Prop. 3.4.

1) First inequality comes from i), since {gr(R/0p) = Ir(R/v) —Ir(0p/7);
the second one holds since v C 6p.

iii) is obvious by 7).

iv) lr(R/0p)+6 =73 i, ti so the inequalities are immediate from ii). [l

Proposition 3.7 Let p be the number defined in 3.5. Then:

IA

2(c—=9)—p d < (c=08)r1—plri—1) < (c—=0)r1 —Ilg(0p /v)(r1 = 1).



Proof. Since r;, =...=17;, =1, and r; <71 Vi, using Prop. 3.1, 4ii) we get:

c—0 c—0
c—0+(c—d—p) < 522” :c—é—i—Z(ri—l) <c—d+(c=5—p)(r1—1).
1 1

To get the last inequality use Lemma 3.6, 7). O
Corollary 3.8 Let, as above, n=c— 6. Then:

i) 20—c=>"(ri—1)<(c=8—p)(r1 —1) <Ir(R/Op)(r1 —1).

1) 20 —c<lIg(R/Op)(t1 —2).
Proof. i) See the proof of Prop. 3.7, then use Lemma 3.6, ii).

i1) As in the proof of Prop. 3.7, using Prop. 3.1 and Prop. 3.2, we obtain:

20—c+Ig(R/0p) =31 (t;—1) < (c—=86—p)(t1 —1) <Ir(R/6p )(t1 —1). O
Corollary 3.9 Either t1 =1 (i.e. R is Gorenstein) or t1 > 3.
From the first inequality of Prop. 3.7 we deduce the following
Corollary 3.10 p > 2¢ — 36.

Of course, the above lower bound for p is significant in the case 2¢ — 39 > 0.
Using iii) of Lemma 3.6 we see that if ¢ < 0, then 2c — 34 > 0. Example 5
in 4.12 shows that the converse is false. The following bound for lgr(R/fp ) is
non trivial when o < 0 (see Example 4 in 4.12).

Proposition 3.11 Igr(R/0p) < (26 —c¢)(r; — 1).

Proof. Let w = (1,22,...,%, )R and consider, as in [10], Satz 3), for
every ¢ = 1,..,71 the R-module w; := (1,...,2;)R. In particular wy is
two-generated, so by [3], Satz 2, Ig(R/R : wa) = lg(wz2/R). It is clear that
wit1/w; ~ R/b;11, where b;11 = Anng(w;11/w;). By [10], Hilfssatz 4 and Satz
1 we obtain: (R : w;/R : wit1) <Ig(R:biy1/R) < Ig(R/biy1) +25 —c =
Ip(wiy1/wi) +20 —c. Since R=R:w; DR:ws D ... DR :w, = Op, we
have Ig(R/0p) =Ir(R/R:ws)+ X5 Ir(R:wi/R:wi1) <
lR(wg/R) + Z:;gl ZR(le/wi) + (25— C)(Tl — 2) = lR( w /R) + (2(5 - C)(’I“l — 2).
The thesis follows. O

Remark 3.12 The difference a := (¢—9§)r; —4 has been taken into account by
several authors. In [10] it is proved that a > 0, when R is a one-dimensional
local analytically unramified Cohen Macaulay ring. In [11] it had already been
shown that a > 0, under more particular hypotheses. In [4] some general
stucture theorems are presented for rings with a = 0 (the so called rings of
maximal length) or a =1 (the so called rings of almost mazimal length).

Proposition 3.7 implies that a > Ig(0p /v)(r1 — 1). Hence:

a<ri—1 = 6p =.
a=1r—1 = lR(HD/’y)Sl.

The cases a < r; — 1 are studied in [6] and [7]. See also the following 5.2.



4. Relations between r;’s and ¢;’s.

Starting from the almost Gorenstein case, we are led to consider in a t.s.
[r1,...,7,1,1,...,1] the index ¢ of the last element r; which is not 1. This
number has a central role in Prop. 4.3 which involves R;, 8p and B. When
© = 1, this proposition gives again the known characterizations of almost Goren-
stein rings.

Lemma 4.1 Let J be any proper ideal of R. If v(R;) Cv(J), then R; C J.

Proof. In fact v(R;) C v(J) = v(R;NJ)=v(R;) = R,NJ=R, =

Lemma 4.2 The following facts hold:
i) rig1>1 = c—1ev(w?Ry).
ZZ) c—1 EV(w2RZ‘) ~— R; Z 0p .
iii) If r, > 1, then t, >r, + 1.
Proof. i) By Prop. 34, riy1 >1 = s, ¢ v(6p) =
c—1-s;ev(w)\v(w) = c—1=s5;+(c—1-s;) €v(w?Ry).

ii) By Lemma 2.3 c—1 € v(w?R;) <= 0¢ v(R: wR;). Suppose c—1 €
v(w?R;). If R; C 0p, then 1 € 0p : R; = R: wR;, contradiction. Vice
versa, if R; € 6p, by Lemma 4.1 there exists an element x € R; \ 0p such
that v(z) ¢ v(0p); then u xw € R for all units u € R.

It follows that 0 ¢ v(R: w R;).
iii) We have: r, =Ilgp(wRp_1/wRy) =lg(wRp_1/7) <

Ir(w? Rp_1/7) =lr(w? Ry_1/ w? R,) = t,. Looking at valuations we see that
the above inequality is strict since ¢—1¢€ v(w? R,—1) \v(w R,—1), by i). O

In [2] it is proved that
R is almost Gorenstein <— m =wm <= ri—1=2J—c.

Hence: R almost Gorenstein, not Gorenstein <= 6p = m. In other words:
t.s.(R)=1[r1,...,1] with m>1 <= Ry C0p and Ry Z 0p.
Next proposition is a generalization of this fact.

Proposition 4.3 Let 1 < i <n andlet B= w™ be the blowing up of the
canonical module of R. The following are equivalent:

’L) R,L' g 9D and Ri—l Q GD .
i) BCR:R; and BZ R: R;_;.
iii) t.s.(R) =][r1,...,ri,1,1,...,1] with r; > 1.

Z'U) t.s.(@D):[tl,...,ti,l,lw.‘,l] with t; > 1.



Proof. i) < ii) R, C p <— wR;, =R, < w™R; = R; — B C
R: Ri-

i) = i) By hypothesis s; e v(0p) Vj>i = r; =1 Vj>i. We
have to prove that r; > 1. If r; =1, then by Prop. 3.2, 4),
wRi 1=2; 1R+ wR; C R = R; 1 C 0p, absurd.

iii) =) 1, =Ilr(R/R:R;_1) —Ilr(R/R: R;) =
Ir(R/R: R;_1) — (n—1i) and analogously, by Prop. 3.2, ii),
ti:lR(R/QD :Ri_l)—(n—i) == t; >r; > 1.

w) = i) If ¢ =n, the implication is true by Prop. 3.2, ).
Let i <mn—1. Surely, by Prop. 3.2, r; > 1 and by Lemma 4.2, i), r, =1. If
r; > 1 with ¢ < j <n and all the subsequents equal to 1, as above we would
get t; > r; > 1, contradiction.

ZZ’L) - Z) rm=1—= wR,_1 = l‘n_lR—F’Y CR=— R,_.1C 0p. If
also r,_1 =1, then wR, 2=z, oR+ wR,_1 CR, then R, 5 C 0p and
soon. If R;_y C 0p, then r; =1, and this concludes the proof. O

Proposition 4.4 If i < n —1 s such that r; > 1 and r; = 1 for all
J,1+1<3<n, then

Proof. By Prop. 4.3 we have R; C 6p, hence r; = lg(wR;—1/R;) and
ti = lr(w? R;_1/R;). Since, by Lemma 4.2, i), ¢—1 € v(w?R;_1), our
thesis will follow by proving that v(w? R;—1) = v(w R;—1) U {c — 1}. Hence,
let mev(w?Ri—1)\v(wRi—1): we claim that m = ¢ — 1.

By Lemma 2.3 ¢—1—-m € v(R: Ri_1). Let m = v(z), * € w? R;_; and
c—1—-m=vy), y € R: Ri_1. If v(y) >0, then yR;,_1 C R;, hence
c—1=v(zy) € v(w?R;) = v(R;), absurd. Hence v(y) = 0 and the thesis is
achieved. O

Proposition 4.5 The following are equivalent:
i) sp—1 €v(fp).
1) Sp_1=c—2.
i) r, = 1.
Proof. Recall that w R, = ~.
i) = ). If c—=2¢ v(R), then 1 € v(w). But this would imply that

Sp—1and sp_1+1 €v(wRy_1)\v(y) = rm >1 = s,-1 ¢ v(0p ), absurd.
i) = 4ii) Obviously v(w Ry—1) \v(y) = {sn-1}. 0

Corollary 4.6 B=R < r,>1
Proof. B=R <= lcv(w) <= c—2¢ v(R). 0

Corollary 4.7 If 0p = R; for some i, then the equivalent conditions of
Proposition 2.7 hold.
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Proof. BC R: R; by Prop. 43 =— R:B2OR;=60p = R:B= 0p,
since the other inclusion is always true. O

In the particular case 0p = R,, we obtain:

Proposition 4.8 Set, as above, n; :=c(R: R;)—0(R: R;) and m; :=c(0p :
R;))—Ir(R/0p : R;). The following facts are equivalent:

i) 0p =1.

i) w? = R.
it1) t; =s;— s;—1 foreach i =1,....n.

iw) m; =0 foreach i =0,....,n.

v) Op : Ry =t°"* R for each i =0,....,n.
vi) w* =R.

If the above conditions hold, then

a) t1 =e.
b)Vi>1, T >t = n; > nj_1.

Proof. i) <= ii) See Prop. 2.6, ii).

Z’L) — ’LZZ) In fact t;, = lR( w? Ri/wz Rifl):lR(Ri E/Ri,1 E) =8;—S;—1-.

1i1) = iv) We have seen in Prop. 3.1 that ¢; = s; — s;-1 +m; — m;_1.
Hypothesis iii) implies that m; =mg = ... =m, =c(R) —6(R) = 0.

w) = v) m; =0 = v(fp : R;) = [c— 8;,+00). Since the inclusion
t=% R C fAp : R; holds for every i = 0,.....,n, the equality of the value sets
implies the other inclusion.

v) = i) Takeinv) i=0.

vi) = i) and i) = wi) are immediate by Prop. 2.6.

a) t1 =8, — sg=e.

b) Using Prop. 3.1 iii), it is immediate. O

Our conjecture t; > 71 is true for rings having maximal C.M. type, namely
r1 = e — 1. In this case we get a more precise result.

Proposition 4.9 Let e > 3. If for some 1 <i<n r;=e—1, then t; =e.
Moreover, for the same 1 we have: si—1=(1—1)e, s; =ie.

Proof. Since t°R;_1 C R; C R;_1, we have the chain t*wR;_1 C wR; C
w Ri,1 .

Hypothesis r; = e—1 implies that Ip(w R;/t°w R;—1) = 1 and since c—1+e¢ €
v(wR;) \ v(t®wR;_1), it follows that

(%) wR; =t°wR;_1 +zR with v(z)=c—1+e.
Analogously, considering the chain t*w?R;_; C w?R; € w?R;_1, we see

that the thesis t; = e is equivalent to t°w?R;_; = w?R;. It will be sufficient
to prove this last equality. From (x) we have w?R; = t°w?R;_1 + zw. Now,
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2 €y CR; forevery i = 2w C wR; = w?R; = t°w?R;_1+2R. By Lemma
42 r;>1 = c—1€v(w?R;_1), then v(z) € V(t°w?R;_1) : we obtain that
t°w?R;_1 = w?R;, as claimed.

To prove the other equalities, note that by definition s; < s;_1 + e. As
already remarked r; = e — 1 implies that v(wR;) = v(t°wR;—1) U {c — 1+ e}.
Hence s; € v(t*wR;—1), but s; > 8,1 +e = s; = 8,1 +e=1e. O

For rings of C.M. type 2, we have a complete description of the type se-
quences of R and 6p. In this case the arrow = of Prop. 3.4 becomes <= .

Proposition 4.10 Suppose ri = 2. Then:
SiGV(GD) = Tit1 =tit1 =1
Si¢l/(0D) - 7‘1'+1:2, ti+1:3.

Proof. We have from Corollary 3.8, i) and Prop. 3.11 that [r(R/0p ) = 20—
¢ hence lr(0p /v) = 2¢—30. The elements of the type sequence [rq,....,7,], n =
c—9, of R are 1 or 2, suppose p times 1 and n — p times 2. Then § =
St i =p+2(n—p) = p=2c— 35 Hence p=Ig(0p/y) and riys =
1 < s; € Op (see Prop. 3.4). By hypothesis w is two-generated, say w =
(1,2), then 1,z,2% constitue a system of generators for w?; hence t; < 3, and
Corollary 3.9 implies that ¢; = 3. Consider now the type sequence of 6p, by
Prop. 3.2, r, =1 = t; = 1. Suppose that for some ¢ either ¢t; =2 or r; =2
and t; = 1. Then (5+ZR(R/ 9[)) = Z?:l t; < lR(QD /’)/) +3ZR(R/ 9[)) -

6 <c—08+ 20 —c, absurd. The thesis follows. O

Another case in which our conjecture t; > r; is true comes directly from
Corollary 3.8:

Proposition 4.11 If Ig(R/0p)(r1 —2) <25 —¢, then r <t;.

Proof. If r; > t;, from Corollary 3.8, i), we get 20 —c <Ir(R/0p )(t1—2) <
lR(R/HD)(T1—2). O

Example 4.12 Suppose R = C[[t"]], h € v(R), is a semigroup ring. The
first three examples show that the converses of Prop. 3.2, ii), Prop. 3.4 and
Prop. 4.9 are false.

1. Let v(R) = {0,10,11,17,20 —}, then 0p =~, 6 =16, c— 5 =4 <
12=26—c, t.s.(R)=1[7,2,5,2], t.s.(6p)=[10,1,6,3].
In this case to =1 and ro > 1.

2. Let v(R) ={0,5,6,10 —}, then 0p =~, §=7, c—0=3<4=25—c,
t.s.(R) = [3,1,3], t.s.(0p) = [5,1,4]. In this case t3 = ro = 1. But
s1=5¢v(6p).

3. Let v(R) ={0,10,11,12,14,17,20 —}. Then: ¢ =20, 6 = 14, r; =5,
w =1(0,1,3,4,6), w? = R, hence fp =~. t.s(R)=[51,1,3,2,2],
t.s.(0p) =110,1,1,2,3,3]. In this case ¢ =10, but 1 =5 < e — 1,
moreover 14 > tqg = 2.
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4. Let v(R) = (13,121,133, 163,164, 166,168, 170,171) . We have & = 181,
=322, 1 =4, 0p = (121,166,168, 198, 216, 223,234, 241, 248, 266) .
Hence Ig(R/0p ) =43 and o = —3.

Here bound in Prop. 3.11 is better than bound in Lemma 3.6, 47) . In fact:
25 —c=40 < Ig(R/0p) =43 < (26 — ¢)(r1 — 1) = 120 < ¢ — § = 141.
The type sequences t.s.(R) and t.s.(0p) are respectively:
4 4 4 4 4322221221211111211112211211112211211
1122112111122112111121112111121...1]
[10 10 10 10 8633331321311111211113211211113211211
1132112111132112111131112111131...1]

5. Let v(R) ={7,8,9,10,12 —»}. Wehave 6 =7, r1 =3, c=12. and R
is almost Gorenstein, so fp = m, hence o =1, but 3§ —2c<0.

5. Minimality and maximality.

In the comparison between the type sequences of the ring and of the Dedekind
different, properties like minimality and maximality are completely equivalent.

e Minimal type sequences. In [2] one can find the properties of almost
Gorenstein rings. Analogous properties for fractional ideals are considered in
[13]: a fractional ideal I is called of minimal type sequence (m.t.s. for short) if
and only if ¢.s.(I) = [r(I),1,....,1], where r(I) the Cohen Macaulay type of I
as an R-module. Since it is well known that r(I) =1 <= I ~ w, it follows
in particular that t; =1 <= R is Gorenstein.

Next proposition deals with the m.t.s. property in the not Gorenstein case.

Proposition 5.1 Let R be not Gorenstein. The following are equivalent:

i) R is almost Gorenstein.
it) Op is m.t.s.
i) W™ =R:m.
w) B=R:m.

In this case t; = r1 + 1.

Proof. i) <= ii) is equivalence i) <= iv) of Prop. 4.3 for i = 1.

i) = i4i) is immediate, since when R is almost Gorenstein, we have
fp = m = mw and by Prop. 2.6 w* = w? = R: m. Last equality is
proved in [2], Prop. 28.

iii) = iv) w** isaring = w*™ = w? = B by Prop.2.7.

i) <= 4v) has been proved by D’Anna in [5], Prop.3.4. O

e Maximal type sequences. Recalling that in general t¢.s.(R) =
[r1y.eeymn], with 7y < e—1 and r; < ry, of course "maximal” type sequence
means t.s.(R) =[e—1,...,e—1]. In [7] and [6] the authors characterize all the
rings whose type sequence is closer to the maximal one in the following sense:
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t.s.(R)=[e—1,...,e—1,e —1—a]. For simplicity, we call a-mazimal a type
sequence of this form.

Proposition 5.2 (See [6] and [7]). Let a € IN be such that a <r; —1. The
following facts are equivalent:

i) (c=0)r(R)—d=a and r1 =e— 1.
ii) v(R)=1{0,e,2e,.....,(n — 1)e,ne —a,—}.
iii) t.s.(R)=[e—1,...,e—1,e—1—al.
Moreover, if a <ry — 2, then condition 1 =e—1 in i) is superflous.

We want to show now that the a-maximality of ¢.s.(R) is equivalent to the
a-maximality of t.s.(0p ), ie. t.s.(0p)=]e,.....,e,e —al], (see Prop. 5.4). To
do this we need some more or less well known results, that we list below for our
convenience.

In the following (l4,....,I;) denotes the v(R) -set generated by I,....,I; and,
for any numerical set H C Z, H+1:={h+1, h€ H}.

Lemma 5.3 Let 0 < a <e—2 andlet v(R) = {0,e,2e,....,(n—1)e,ne—a, —}.
In this case ¢ =ne —a, n=c— 6.

i) Canonical ideals:
For a=0 then v(w)=1(0,1,2,....,e —2). Call it v(wy).
For any a > 1, change the last a generators by addying 1 to each one,
ie. V(wg)=1(0,1,....,e—a—2,e—a,..,e—1).
In particular, v(w.—2) =(0,2,3,.....,e — 1).

1) Type sequence of R :
ts(R)y=[e—1,...,e—1l,e—1—a

iii) Omega square: B
for a=0,...,e—3 w?=R
for a=e—2 v(w?) =

i) Type sequence of Op :
for a=0,...,e—3 t.s(bp)=]lee,..,ee—al,
for a=e—2 t.s.(0p)

v) Dedekind different:
for a=0,...e—3 0p =7,
for a=e—2 0p =zR+~ with v(z)=(n—1)e.

Proof. i) Just remember that v(w)={j€ Z | c—1-j¢ v(R)}.
1i) For every a = 0,....,e — 2 and for every ¢ = 0,....,n — 1, we have
v(wR;)=v(w)+ie. Then forevery i =0,.....,n — 2,
v(wR)\v(wRit1) ={0,1,....e —a—2,e—a,...,e — 1} + ie.
So we obtain that r;11 =Ilg(wR;/wR;4+1) =e— 1.

14



Let now i = n—1. By definition r, = #[v(w Ry,_1)\v(7)]. Since v(w R,_1) =
v(w)+ (n—1)e = ((n—1)e,(n—1)e+1,...,ne—a—2,ne —a,..,ne — 1),
we see that only the first e — a — 1 elements are smaller than ¢ =ne — a and
we conclude that r, =e—a — 1.

iii) For a=0,....,e — 3 we see that 1 € v(w), then w? = R.
For a =e—2, by item i) w =(0,2,3,....,e — 1), then w? = {0,2,—}.

iv) For a=0,....,e —3 and for i =0,. — 2, using 4ii) we get

z+1 ZR(R R/RZ_HR)—@

For a = e—2 and for i = 0,....,n — 2, we have v(w? R;) \ v(w? Riy1) =
{0,2,.....,e —1l,e+ 1} +ie and we get again t;11 = e.
It remains to compute the last component t, = #[v(w? R,_1) \ v(v)]. For
a=0,...,e—3, v(w?R, 1) =v(R,-1R)={(n—1)e,—}; in this set the
elements < ¢ are e —a, so t, =e—a. For a =e— 2, we have by i) r, =1,
then by Prop. 3.2 also ¢, = 1.

v) The thesis follows from i), by applying Lemma 2.3. O

Proposition 5.4 Let e > 3.

i) For 0<a<e—2,
ts(R)y=[e—1,..,e—1l,e—1—a] < t.s.(0p)=]e,e,....e,e —al.

i) t.s(R)=[e—1,...,e—1, 1] < t.s.(0p)=]e,e,.....e, 1].

Proof. Both implications = follow from Prop.5.2 and Lemma 5.3.

1) <= Suppose 0<a<e—2 and t.s.(0p) =le,e,....,e,e—al. By Lemma
4.2 7, =0— Zz | 1 < e—a and by hypothesis 0+{r(R/6p) = ne—a. Then
ne—a—Ip(R/0p)— S0 ri<e—a= S ri>Mn—1)e—Ig(R/0p)=
(n=1)(e=1)+(n—Ir(R/ 0p )—1,ie. 3701 rs > (n=1)(e=1)+(n—Ir(R/ 0p)).
On the other hand > 1 r; <(n—1)r < (n—1)(e —1). The only possibility
is > 1 ri = (n—1)(e—1) and Ir(R/0p) = n, i.e. Op = t°R. Hence

r,=e—1fori=1,..,n—1 and r,=ne—a—-n—(n—1)(e—-1)=ec—a—1.
1) <= Suppose ts(GD) = [e,e,....,e,1]. By Lemma 4.2 r, = 1. Asin

the above item we find ZZ 1 ri=Mnm—-1)(e—1)+n—I1r(R/0p)—1. Hence
n—Igr(R/0p)—1<0, ie. either n—Ig(R/0p)=0 or n—Ig(R/0p)=1
In the first case 6p =+, moreover § = Z::ll ri+l=mn-1(e-1) =

d=mne—n—e+1l=ne—c+d—e+1 = c—1 = ne—e, which is a
contradiction.

The other possibility leads to lR(GD /v) =1 and Y. 1 r, = (n—1)(e—1),
hence r; =e—1 for every i =0,...,n — 1. O
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