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Abstract

In this paper we treat several topics regarding numerical Weierstrass semigroups and the
theory of Algebraic Geometric Codes associated to a pair (X, P ), where X is a projective
curve defined over the algebraic closure of the finite field Fq and P is a Fq-rational point of
X . First we show how to evaluate the Feng-Rao Order Bound, which is a good estimation
for the minimum distance of such codes. This bound is related to the classical Weierstrass
semigroup of the curve X at P . Further we focus our attention on the question to recognize
the Weierstrass semigroups over fields of characteristic 0. After surveying the main tools
(deformations and smoothability of monomial curves) we prove that the semigroups of
embedding dimension four generated by an arithmetic sequence are Weierstrass.
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0 Introduction.
The paper is divided into two parts. In the first one we describe some bounds of the minimum
distance of AG codes, while in the second one we deal with the problem to characterize the
Weierstrass semigroups.

In the first part F will denote the algebraic closure of the finite field with q elements Fq; X
will be a smooth projective algebraic curve of genus g defined over Fq.
To a pair (X,P ), where P ∈ X is a Fq-rational point can be associated a family of Algebraic
Geometric Codes Ci, i ∈ IN and a numerical semigroup S. For i large enough, the minimum
distance d(Ci) of such codes can be bounded by the Feng-Rao order bound dord(Ci) which
depends only on the semigroup S (see [10]). When S is non-ordinary, it is called the Weierstrass
semigroup of X at P . Evaluations or estimates of the order bound are given by several authors,
either in general or in particular cases (see, e.g., [1], [22]). In the first part of this paper we
give a survey of these results and we state a conjecture (2.3) on the behaviour of the sequence
{dord(Ci)}i∈IN, for i > c + d − e − g, where c, d, e are suitable integers associated to the
semigroup S (in [22] this conjecture is proved in many cases).

According to the recalled relation with code theory, the classical study of Weierstrass semi-
groups is becoming relevant. In particular an interesting and still open hard question is how to
recognize Weierstrass semigroups, i.e. those semigroup associated to a smooth projective curve
at a point P . This problem is approached in the second part under the simplifying assumption
that X is a smooth projective algebraic curve of genus g defined over an algebraically closed

∗A part of this work was done while the last two authors were visiting the Department of Mathematics of the
Indian Institute of Science, Bangalore, India. They also thank Professor Dilip Patil for his warm hospitality.
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field F with char(F) = 0. It is known that there exist non-Weierstrass semigroups: the first
example is due to Buchweitz, see [2]. A fundamental result on this topic has been proved by
Pinkham in his Phd thesis [25]:

“S is Weierstrass if and only if the monomial curve X = Spec(F[S]) is smoothable”.
In some case it is known that a monomial curve is smoothable: see [27] for the complete inter-
section case, see [29] forX ⊆ A3, see [16] forX ⊆ A4 and Gorenstein, see [18] for semigroups
of genus g ≤ 8, see [17], [19] for certain semigroups of embedding dimension 5 or with g = 9.

In this paper we collect the main definitions and results on this question, further we illustrate
the explicit algorithm to obtain a deformation of a monomial X with its Gm action and show
several examples in a detailed way. Finally we show that monomial curves in A4, generated
by an arithmetic sequence are smoothable. It follows that every semigroup S of embedding
dimension 4 generated by an arithmetic sequence is Weierstrass.

1 Weierstrass points and Weierstrass semigroups
Let F denote an algebraically closed field. Let X be a smooth projective algebraic curve of
genus g defined over F with function field F(X), and let P ∈ X . For each k ∈ IN, let

L(kP )={f ∈ F(X) \ 0 | div(f) + kP ≥ 0} ∪ {0}.

This is clearly a vector subspace of F(X); we denote by λ(kP ) its dimension over F. The
following are well-known facts:

λ(kP ) = dimF(L(kP )) ∈ IN, λ((k − 1)P ) ≤ λ(kP ) ≤ λ((k − 1)P ) + 1 for each k > 1,
and by Riemann-Roch Theorem λ(nP ) = n− g + 1 for each n ≥ 2g − 1.

Hence the set H(P ) := {k ∈ IN+| λ((k − 1)P ) = λ(kP )}, of gaps at P , is a proper subset
of {1, 2, . . . , 2g − 1} and it has exactly g elements. Moreover it is easy to see that its comple-
ment S(P ) := IN \H(P ), the set of non-gaps at P , is a numerical semigroup.

Recall that a semigroup S is called ordinary if it is of the form S = {0, e, e + 1 →} for
some e > 0 (note that its genus, also called δ, is exactly e− 1).

Definition 1.1 A Weierstrass point of X is a point P such that H(P ) 6= {1, . . . , g}. A semi-
group S is called Weierstrass (over F) if there exists a smooth projective algebraic curve X
(defined over F) and a Weierstrass point P such that S = S(P ).

See for more details, e.g., [12, Exercise A.4.14] or [6].

Remark 1.2 Let P ∈ X , then by Riemann-Roch Theorem

1. n ∈ S(P ) ⇐⇒ there exists f ∈ F(X) such that (f)∞ = nP , i.e. ordP (f) = −n.

2. n ∈ H(P ) ⇐⇒ there exists a regular differential form ω with ordP (ω) = n−1 (because
by Riemann-Roch theorem: λ(K−(n−1)P ) > 0, for each gap n ∈ H , whereK denotes
a canonical divisor).

3. P is a Weierstrass point ⇐⇒ λ(gP ) ≥ 2 ⇐⇒ there exists a regular differential form ω
with ordP (ω) ≥ g. In particular, it follows immediately that if X has a Weierstrass point
then g ≥ 2.
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4. By the previous point, the presence of a Weierstrass point on an algebraic curve of genus
g ensures the existence of a morphism of degree not exceeding g from the curve onto the
projective line: pick the morphism associated to the linear system |iP | with any i such
that λ(iP ) = 2 and i ≤ g.

1.1 On the number of Weierstrass points on a curve.
For a smooth curve X let W denote the set of Weierstrass points of X . We know that

1. If g ≤ 1 the set W is empty.

2. Case X hyperelliptic. A hyperelliptic curve is an algebraic curve which admits a double
cover over IP1. These curves are among the simplest algebraic curves: they are all bi-
rationally equivalent to curves given by an equation of the form y2 = f(x) in the affine
plane, where f(x) is a polynomial of degree > 4 with distinct roots, and the degree of
f(x) is either twice the genus of the curve plus 2, or twice the genus of the curve plus
one.

If a double cover exists, then it is the unique double cover and it is called the “hyperelliptic
double cover”. In algebraic geometry the Riemann-Hurwitz formula, states that if X , X ′

are smooth algebraic curves, and Φ : X −→ X ′ is a finite map of degree d then the
number of branch points of Φ, denoted by N , is given by

2g(X)− 2 = 2d(g(X ′)− 1) +N

By the Riemann-Hurwitz formula the hyperelliptic double cover has X ′ = IP1, hence
has exactly 2g + 2 branch points. For each branch point P we have λ(2P ) = 2, hence
these points are all Weierstrass points; for each of them there exists a function f with a
double pole at P only. Its powers have poles of order 4, 6, and so on. Therefore at P the
gap sequence is 1, 3, 5, ..., 2g − 1 and λ(kP ) = 2k, we conclude that the Weierstrass
points of X are exactly the 2g + 2 branch points of the hyperelliptic double cover.

3. For algebraic curves of genus g there always exist at least 2g + 2 Weierstrass points
and only the hyperelliptic curves of genus g have exactly 2g + 2 Weierstrass points.

4. The upper bound on the number of Weierstrass points is g3 − g.

5. [14] For each g ≥ 3 there exist compact Riemann surfaces of genus g with at least two
Weierstrass point with different gap sequences.

2 Algebraic-geometric codes
Let now F denote an algebraic closure of the finite field with p elements Fp, p prime. Let X be
a smooth projective algebraic curve of genus g defined over Fq, q = pr for some r ∈ IN+, with
function field F(X). Let P ∈ X be an Fq-rational point: a family of codes and a numerical
semigroup can be associated to (X,P ) as follows. For each k ∈ IN, we consider the vector
subspace of Fq(X) defined as

LFq(kP )={f ∈ Fq(X) \ 0 | div(f) + kP ≥ 0} ∪ {0},
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it can be shown that λ(kP ) = dimF(L(kP )) = dimFq(LFq(kP )) ([12, Proposition A.2.2.10.]).

We now recall the definitions of the AG codes associated to the pair (X,P ). Choose
P1, ..., Pn distinct Fq-rational points on X such that Pj 6= P for each j, and consider the Fq-
linear map

Φk : LFq(kP ) −→ Fqn as Φk(f) = (f(P1), ..., f(Pn)).

Definition 2.1 The family of one-point AG codes of order n is defined as

Ck := (Im Φk)
⊥ = {x ∈ Fqn |< x,Φk(f) >= 0 for all f ∈ LFq(kP )},

where < x, y >:= x1y1 + · · ·+ xnyn for each x, y ∈ Fqn.

A good estimate of the minimum distance d(Ck) of an AG code is the Feng-Rao order bound
dORD(Ck) which depends only on the semigroup S = S(P ). Let us fix the following notation

S = {s0 = 0, s1, ..., sj, ...} 6= IN

with si < sj if i < j.

Definition 2.2 For sj ∈ S, let

[
N(sj) := {(sh, sk) ∈ S2 | sj = sh + sk}
ν(sj) := #N(sj)

.

The Feng-Rao order bound of the code Ck is dORD(Ck) := min{ν(sj) | j > k} ≤ d(Ck).

If S is ordinary, that is S = {s0 = 0, s1 = g + 1, s2 = g + 2→}, the sequence {ν(sj), j ∈ IN}
is non-decreasing and so

dORD(Ck) = ν(sk+1) for k ≥ 0.

In the other cases, it is known that there exists m ∈ IN+ such that

ν(sm) > ν(sm+1) and ν(sm+i) ≤ ν(sm+i+1) ∀ i ≥ 1.

Then: dORD(Ck) = ν(sk+1) for each code Ck with k ≥ m.

2.1 Methods for the evaluation of sm.
Our goal is to find sm for a given semigroup S; to this end it is useful to consider the elements
of S “near” the conductor.

Notation 2.3 We shall refer to a numerical semigroup S, with finite complement in IN

S = {0 = s0, s1, ..., sj, ...} 6= IN

where si < sk, if i < k. Further we denote:

embdim(S) = minimal number of generators of S

e = s1 = min{s ∈ S | s 6= 0}, the multiplicity
c = min{r ∈ S | r + IN ⊆ S}, the conductor
d = max{si ∈ S | si < c}, the dominant
c′ = max{si ∈ S | si ≤ d and si − 1 /∈ S}, the subconductor
d′ = the greatest element in S preceding c′, when c′ > 0

` = c− 1− d, the number of gaps of S greater than d
s̃ = max{s ∈ S, | s ≤ d, s− ` /∈ S}.
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This means that S has the following shape (thinking of it as embedded in IN, where ∗ means a
“gap” of S)

e−1 gaps c′−d′−1 gaps ` gaps

S = {0, ∗ · · · ∗ e, . . . , d′, ∗ · · · ∗ c′ ←→ d, ∗ · · · ∗ c→}

A semigroup S is called acute if either S is ordinary, or c, d, c′, d′ satisfy c− d ≤ c′ − d′
(see [1]). If S is non-ordinary, it can be seen that:

S acute =⇒ c′ ≤ s̃ ≤ d.

Example 2.4 S = {0, 8e, 12d′ , 14c′ , 15, 16d, 20c →} has (` = 3, s̃ = 14, c′−d′ = 2 < c−d =
4, S non-acute).

From now on, S will be non-ordinary. In order to evaluate sm we study the difference
ν(si+1) − ν(si) for si ∈ S. To this end, it is “natural” to consider the following partition of
N(si) = {(sj, sk) ∈ S2 | si = sj + sk}:

N(si) = A(si) ∪B(si) ∪ C(si) ∪D(si)

A(si) := {(x, y), (y, x) ∈ N(si) | x < c′, c′ ≤ y ≤ d}
B (si) := {(x, y) ∈ N(si) |(x, y) ∈ [c′, d]2 }
C (si) := {(x, y) ∈ N(si) | x ≤ d′, y ≤ d′}
D(si) := {(x, y), (y, x) ∈ N(si) | x ≥ c, x ≥ y}.

Example 2.5 S = {0, 8e, 12d′ , 14c′ , 15, 16d, 20c →}. For i = 16, si = 30 :
A(si) = C(si) = ∅, B(si) = {(14, 16), (15, 15), (16, 14)},
D(si) = {(0, 30), (8, 22), (30, 0), (22, 8)}.
For s6 = 20 : A(s6) = B(s6) = ∅, C(s6) = {(8, 12), (12, 8)} , D(s6) = {(0, 20), (20, 0)}.

Setting 2.6
α(si) := #A(si+1)−#A(si)

β(si) := #B(si+1)−#B(si)

γ(si) := #C(si+1)−#C(si)

δ(si) := #D(si+1)−#D(si).

Therefore: ν(si+1)− ν(si) = α(si) + β(si) + γ(si) + δ(si).

Lemma 2.7 (see [22])

1. α(si) ∈ {−2, 0, 2} and α(si) = 0, if si > d′ + d.

2. β(si) ∈ {−1, 0, 1} and β(si) = 0, if si > 2d.

3. γ(si) is difficult to evaluate if si < 2d′, trivial otherwise:

in fact γ(2d′) = −1 and γ(si) = 0, if si > 2d′.

4. If si ≥ 2c, then δ(si) = 1.

If si < 2c and si+1 ∈ S, then δ(si) ∈ {0, 2} and δ(si) = 0⇐⇒ si+1 − c /∈ S.
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5. sm ≤ 2d. (In fact by (1)-(4), if si ≥ 2d+1 then α = β = γ = 0 and so ν(si+1)−ν(si) =
δ(si) ≥ 0.

By (2.7.5), from now one has to consider only elements si ≤ 2d, in order to find the greatest
si ∈ S such that ν(si+1) < ν(si). Assume si + 1 ∈ S.

Remark 2.8 1. If si = s̃+ d, then si+1 − c = s̃− ` /∈ S (by definition), and so si = s̃+ d
is the greatest element satisfying δ(si) = 0.
(For this reason s̃+ d is a “good candidate” for sm).

2. If si ≥ 2d′ we know that γ(si) ≤ 0 and easily one can see when ν(si+1) < ν(si).

3. If si < 2d′ we can write ν(si+1)− ν(si) in function of γ(si): it depends also on the facts:

si+1 − c ∈ S or /∈ S,

si − d ∈ S or /∈ S,

si+1 − c′ ∈ S or /∈ S.

In [22] the results on the position of sm are explained by means of several tables. For example
we show for si < 2d′ how the difference η(si) := ν(si+1) − ν(si) depends on the value of
γ := γ(si). In the following table ×means ∈ S and © means /∈ S. Assume si ≤ 2d′−1
Then: si+1 −c si − d si+1 −c′ α β δ η(si)

© × © −2 0 0 γ − 2
© × × 0 0 0 γ
© © © 0 0 0 γ
× × © −2 0 2 γ
© © × 2 0 0 γ + 2
× © © 0 0 2 γ + 2
× × × 0 0 2 γ + 2
× © × 2 0 2 γ + 4

Recall: γ(si) concerns pairs (x, y) ∈ IN(si) ∩ [0, d′]2.

2.2 Evaluation or bounds for sm.
Theorem 2.9 (See [22]) With setting (2.3) we have:

1. If s̃ < 2d′ − d, then sm ≤ 2d′.

If, moreover, [s̃+ 2, d′] ∩ IN ⊆ S, then sm = s̃+ d.

2. If s̃ ≥ 2d′ − d, then sm ≤ s̃+ d.

More precisely:

(a) If s̃ ≥ d′ + c′ − d, then sm = s̃+ d.

(b) If s̃ = 2d′ − d, then sm = s̃+ d.

(c) If 2d′ − d < s̃ < d′ + c′ − d, we can give upper and lower bounds for sm under
additional assumptions. In particular:

if [d′ − `, d′] ∩ IN ⊆ S, then c+ d− e ≤ s̃+ d′ − `+ 1 ≤ sm ≤ 2d′.
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Case (a) is satisfied e.g. if d− 2 ≤ s̃ ≤ d; or if c′ ≤ s̃ ≤ d, in particular if S is acute.

Example 2.10 1. S = {0, 25e, 26, 28, 30, 31d′ , 33d, 39c →}
(s̃ = 28, s̃ < 2d′ − d, [s̃+ 2, d′] ∩ IN ⊆ S, sm = s̃+ d).

2. S = {0, 7e=d′ , 13c′ , 14, 15, 16, 17d, 20c →}
(S is acute, ` = 2, s̃ = 14, c′ ≤ s̃ ≤ d, s̃ > d′ + c′ − d).

3. S = {0, 20e, 21, 26, 27d′ , 32d, 39c →}
(s̃ = 21 < 2d′ − d, sm = 2d′ = 54 > s̃+ d).

4. S = {0, 10e, 20, 22, 23d′ , 26d, 30c →}
(2d′ − d < s̃ = 22 < d′ + c′ − d, sm = 46 < s̃+ d).

2.3 Conjecture and particular cases.
We believe the following fact is true for each semigroup.

Conjecture: sm ≥ c+ d− e (∗)
We proved in [22] that (∗) holds in several cases, in particular

1. If either (sm ≥ s̃+ d) or (sm ≥ 2d′ and s̃ < d′).

2. If 2d′ − d < s̃ < d′ + c′ − d and [d′ − `, d′] ∩ IN ⊆ S (2.9.2c).

3. When ` = 2, or ` = 3 (here we calculate sm exactly).

4. If τ ≤ 7
(where τ := #{x ∈ IN \ S | x+ (S \ {0}) ⊆ S} is the Cohen-Macaulay type of S).

5. If e ≤ 8 (by (4), since τ ≤ e− 1).

6. If S is generated by a generalized arithmetic sequence (i.e. S =< m0,m1, ...,mp >
where mi = am0 + id, for some a ≥ 1, d ≥ 1), then sm = s̃+ d and so (∗) holds.

7. If S is generated by an almost arithmetic sequence (i.e. S =< m0,m1, ...,mk, n >,
where m0,m1, ...,mk is an arithmetic sequence) and embdim(S) ≤ 5,
then sm ≥ c+ d− e.

3 Weierstrass Semigroups.
In this section we deal with the following

Question : Which numerical semigroups are Weierstrass?
The problem to find conditions in order that a semigroup is Weierstrass seems to be very hard:

there are only partial answers in several directions. Most of them are in characteristic 0, so
we fix the following

Setting 3.1 From now on we assume that F is algebraically closed with char(F) = 0.

We know that there exist non-Weierstrass semigroups: the first example is due to an idea of
Buchweitz:
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Example 3.2 (See [2]) Let S =< 13, 14, 15, 16, 17, 18, 20, 22, 23 >, with g = 16, c = 26,
H =IN\S = {1, ..., 12, 19, 21, 24, 25}.

S cannot be Weierstrass. In fact assume that there exist a curve X and a point P ∈ X such
that S = S(P ). Then, by Remark 1.2, X would have regular differentials ωi vanishing at P to
orders i = ordP (ωi) with i ∈ {0, 1, 2, . . . , 10, 11, 18, 20, 23, 24}.
Hence, taking suitable (tensor) products of the differential forms above, X would have also at
least 46 linearly independent “quadratic” differentials vanishing to every order
∈ {0, ..., 35, 36, 38, 40, 41, 42, 43, 44, 46, 47, 48} at P . This implies that λ(2K)≥ 46, a contra-
diction since, by Riemann-Roch it is λ(2K) = 3g − 3 = 45.

There are generalizations of this idea due to Kim [15] and Komeda [16]:

Proposition 3.3 [16] For a semigroup S of genus g, let IN\S = {h1, . . . , hg} and let
Hm := {hi1 + · · ·+ him | 1 ≤ ij ≤ g}, m ≥ 2.

If S is Weierstrass, then # Hm ≤ (2m− 1)(g − 1) for each m ≥ 2 (∗∗)

Proof. If S is the Weierstrass semigroup of a curve X at P , then X has regular differentials
vanishing to order hi − 1, ∀i = 1, .., g. In fact let K be a canonical divisor (in particular
deg(K) = 2g − 2): for each hi ∈ IN \ S, λ(hiP ) = λ((hi − 1)P ) therefore by Riemann-Roch

λ(K − (hi − 1)P ) > 0.

It follows λ(mK) ≥ #Hm, ∀m ≥ 2, because ∀yj ∈ Hm, L(mK) contains a m-differential
vanishing to order (yj −m) at P . Now it suffices to recall that, again by Riemann-Roch,
λ(mK) = (2m− 1)(g − 1). �

Remark 3.4 The conditions (∗∗) of (3.3) are satisfied for each m ≥ 2 if 2c < 3g.

Proof. Since IN \ S ⊆ [1, c − 1] ∩ IN we get #(Hm) ≤ m(c − 1), then the inequality (∗∗) in
(3.3) is surely satisfied if m(c − 1) ≤ (2m − 1)(g − 1) for each m ≥ 2. This condition is
equivalent to mc ≤ (2m− 1)g− (m− 1): for m = 2, get 2c ≤ 3g− 1, i.e. c ≤ 3g/2− 1/2.
Now assume 2c ≤ 3g − 1, and so mc ≤ 3mg/2 −m/2 ∀m > 0 : one can easily see that the
inequality 3mg/2−m/2 ≤ (2m− 1)g − (m− 1) holds ∀m ≥ 2, ∀g > 0. �

Remark 3.5 In Buchweitz’s example, m = 2, g = 16, #H2 = 46 > 3g − 3. Note that for
m = 2, the genus g = 16 is the “minimum” example: in fact Komeda and Tsuyumine found by
a direct computation that

for each 2 ≤ g ≤ 15 we have #H2 ≤ 3g − 3.

F.Torres found a method to construct symmetric non-Weierstrass semigroups (of large genus):

Example 3.6 (See [33]) Let S ′ be a non-Weierstrass semigroup of genus γ, and let g ∈ IN,
g ≥ 6γ + 4. Then the following symmetric semigroup:

S = {2s | s ∈ S ′} ∪ {2g − 1− 2t | t ∈ ZZ \ S ′}
is non-Weierstrass.

This fact is true since we have:

Proposition 3.7 [33, Scholium 3.5] Assume that a semigroup S of genus g ≥ 6 γ + 4, is γ-
hyperelliptic, i.e. satisfies
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1. the first γ elements m1, ...,mγ ∈ S, mi > 0, are even;

2. mγ = 4γ;

3. 4γ + 2 ∈ S.

Then: S Weierstrass =⇒ S ′ :=
{

0,
m1

2
, ...,

mγ

2

}
∪
i∈IN {2γ + i} is Weierstrass.

Example 3.8 [21] The possible Weierstrass semigroups for a plane smooth projective quintic
(hence of genus 6) are of the following types:

S1 =< 4, 5 >

S2 =< 4, 7, 10, 13 >

Sk = {0, 6→} \ {k} with 6 ≤ k ≤ 11.

Note: S1, S2 and Sk for k = 6, 11 are semigroups generated by an arithmetic sequence, and Sk
is generated by an almost arithmetic sequence for k = 10.

3.1 Deformations and T 1(OX,O).

The next theorem due to Pinkham (thesis) is fundamental to approach our question.

Theorem 3.9 [25] Let S be a numerical semigroup and let X = Spec(F[S]) be the monomial
curve associated to S. Then:

S is Weierstrass if and only if X is smoothable

We want to recall the main tools of the theory. Recall that the field F is algebrically closed with
char(F) = 0. We collect here the most important results and definitions on deformations of
algebraic varieties.

Definition 3.10 A deformation π : Y −→ Σ of a variety X is a cartesian diagram

X ↪→ Yy yπ
{0} ↪→ Σ

where π is a flat morphism.
A deformation π : Y −→ Σ of X is said to be versal if any deformation π′ : Y ′ −→ Σ′ of X is
isomorphic to a deformation obtained from π by a base change h : Σ′ −→ Σ:

pr1

Y ′ = Y × Σ′ −→ Y

π′
y yπ

Σ′ −→ Σ
h

When Σ = Spec k[ε]/(ε2) we say that the deformation is infinitesimal.
Finally we say that a deformation is trivial if Y ' X × Σ.
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Definition 3.11 A variety X is smoothable if there exists a deformation Y of X having smooth
generic fibre.

For a survey on deformations we refer to [31]. We recall the main theorem

Theorem 3.12 [25]
If X is affine variety and has an isolated singularity, then there exists a versal deformation

Y of X . Further, if X has a Gm-action, then there exists a Gm-action on Y extending the
action on X .

Corollary 3.13 Let X = Spec(F[S]), S a numerical semigroup. Then X has a versal deforma-
tion Y compatible to the well-known Gm-action.

Notation 3.14 Let S =< n0, ..., nk > be a semigroup, P = F[x0, ..., xk], weight(xi) := ni
(0 ≤ i ≤ k), and let

B := F[S] = F[tn0 , tn1 , ..., tnk ] = P/I,

where I = (f1, ..., fq), fi homogeneous binomials, di := deg(fi), ∀i = 1, ..., q. Further let:

f =

f1
...
fq

 ∈ P q

G` := {i ∈ {0, . . . , k} | ni + ` /∈ S}

H` := {dk, k ∈ {1, . . . , q} | dk + ` /∈ S} (` ∈ ZZ).

In order to construct deformations for the curve X we need the B-module T 1
B. Let ΩP/F be

the P -module of 1-differential forms, then HomB(ΩP/F ⊗ B,B) is a free B-module
generated by the partial derivatives < ∂

∂x0
, ..., ∂

∂xk
>:

Definition 3.15 Consider the map

ϕ : HomB(ΩP/F ⊗B,B) −→ HomB(I/I2, B)
∂
∂xi

7→ g : g(f) = ( ∂f
∂xi

) (mod I)

We define the B-module T 1
B as T 1

B := Coker ϕ .

Let f be as in (3.14): we shall identify a map g ∈ HomB(I/I2, B) with the column vector
(hj)j=1,...q := (g(f)) of its image mod I .

Remark-Notation 3.16 Let J0 be the jacobian matrix of deg-0-derivatives : J0 =

(
xi
∂fj
∂xi

)
.

Then

J0 ≡


td1 0 . . . 0
0 td2 . . . 0

. . . . . .

. . . . . .
0 0 . . . tdq

 J0(1) (mod I).

where J0(1) is the evaluation of J0 at the regular point Q(1, . . . , 1) ∈ X : by the jacobian
criterion of regularity we know that rank(J0(1)) = k.
Further for ` ∈ ZZ, let J` denote the submatrix of J0(1) obtained by considering the rows(
∂fi
∂xj

(1, ..., 1)

)
with di ∈ H`.
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Proposition 3.17 1. T 1
B =

⊕
`∈ZZ T

1
B(`) is a ZZ-graded F-vector space of finite dimension:

g ∈ T 1
B(`)⇐⇒ deg(g(fj)) = deg(fj) + ` ∀j (see [25]).

2. For g ∈ T 1
B : g =

∑k

i=1
αit

βi
∂

∂xi
.

3. dimFT
1
B(`) = #G`− dim V`− 1, where V` is the sub-vector-space of Fk+1 generated by

the row-vectors of the matrix J`.

Proof. 2. We know that there exists n ∈ IN such that mnT 1
B = 0. Therefore for each g ∈

HomB(I/I2, B) there exists a ∈ IN such that tag ∈ Imφ. Further in B the Euler’s identity

holds:
∑k

i=0
ni xi

∂fj
∂xi

= 0, ∀j = 1, . . . , q and so g can be rewritten as a linear combination of

the partial derivatives with respect to (1, . . . , k).
3. Recall that Im(ϕ) is generated by the the partial derivatives. For each i /∈ G`, we have:

t`+ni ∈ B and so t`+ni
∂

∂xi
∈ Im Φ. On the contrary, note that for i ∈ G`, the vector

∑k

1
αit

`+ni
∂

∂xi
∈ HomB(I/I2, B)(`)⇐⇒ J` (0, α1, α2, . . . , αk)

T = 0, ∀ dj ∈ H`.

Therefore the system has∞#Gl−dim V`−1 solutions. �

For a semigroup S, let S(1) := {n ∈ ZZ | n+ ni ∈ S ∀i ≥ 0}.

Proposition 3.18 Let L = S(1) ∪ {n ∈ ZZ | n < −2c+ 2− 2n0}. Then

1. dim T 1
B(`) = 0 for each ` ∈ L.

2. in particular if S is ordinary or hyperelliptic, then dim T 1
B(`) = 0 for each ` < −4g − 2.

3. Let f ′1, . . . , f
′
q be a reordering of the set {f1, . . . , fq} such that the degrees satisfy

d′1 ≤ d′2 ≤ · · · ≤ d′q. Let J ′0(1) be the associated jacobian matrix and let p = minimum
integer such that the first p rows of J ′0(1) constitue a matrix of rank = k. Then T 1

B(`) = 0
for each ` < −d′p.

4. dim T 1
B(c− 1− n0 − n1) > 0 (see [25]).

5. If ` ≥ c− 2n1, then dim T 1
B(`) = max{0,#G` − 1}

6. If ` ≥ c− 1− n0, then dim T 1
B(`) = 0.

7. For each i = 0, . . . , k we have: tc+n−ni
∂

∂xi
∈ Im Φ, ∀n ≥ 0.

Proof. 1. If ` ∈ S(1), then G` = ∅ and we are done by (3.17.3)
If ` < −2c + 2 − 2n0, then #G` = n0 and ni + nj + ` ≤ 2(n0 + c − 1) + ` < 0, hence
H` = {1, . . . , q}. Then dim V` = n0 − 1 and the claim follows by (3.17.3).
2. Follows by (1): if S is ordinary, or hyperelliptic, then −2c− 2n0 = −4g − 2.
3. Immediate by the assuptions and by (3.17.3), since we have: dim V ′` = n0 − 1, because
H` ⊇ {1, . . . , p}.
4. Let ` = c − 1 − n0 − n1 : we have {0, 1} ⊆ G`, while H` = ∅ since di > n0 + n1 ∀i.
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Therefore the claim follows by (3.17.3).
5. Follows by (3.17.3) since in this case H` = ∅.
6. Follows by (3.17.3) as a particular case.

7. Recall that tc+n ∈ B and deg
(
∂

∂xi

)
= −ni. �

For flatness conditions an essential fact is the following:

Proposition 3.19 (See, e.g. [31, Page 8]) Given a cartesian diagram

X ↪→ Yy yπ
{0} ↪→ Σ

let fi and Fi, i = 1, . . . , q be respectively the equations of X and Y . Then:
the map π is flat ⇐⇒ every relation

∑q
1 rifi = 0, ri, fj ∈ F[x0, . . . , xk] can be lifted to a

relation
∑q

1RiFi = 0, Ri, Fj ∈ F[x0, . . . , xk]⊗OΣ,0.

Theorem 3.20 (See, e.g., [31]) The infinitesimal deformations are in one-to-one correspon-
dence with HomB(I/I2, B) as follows g : I/I2 −→ B

fj 7→ gj(mod I)
(j = 1, ..., q)

 corresponds
to the

deformation
F =

 f1 + εg1

...
fq + εgq


Proof. (Outline) The trivial deformations (i.e. Y ' Σ×X) lie in Im ϕ (3.15).

In fact these deformations are such that the ideal generated by the (fi+εgi) ∈ F[ε, x0, . . . , xk]
becomes equal, after a change of variables, to the ideal generated by the (fi). Now note that a
change of variables is {xi 7→ xi + εhi}; since ε2 = 0 easily one can see that it adds to each

gi an element of the form
∑k

0

∂fj
∂xj

hj . Therefore T 1
B can be naturally identified with the set of

infinitesimal deformations modulo the trivial ones. �

Several semigroups have been recognized to be Weierstrass by means of the above theory:
we collect in the following theorem the most important statements.

Theorem 3.21 Assume X be an affine curve.

1. If X is a complete intersection then X is smoothable [27].

2. If X ⊆ IA3 or X is a Gorenstein curve of embedding dimension 4, then X is smoothable
[29], [3].

3. Let e, g denote respectively the multiplicity and the genus of the semigroup S and let
X = Spec(F[S]). Then:

(a) If e ∈ {3, 4, 5}, then S is Weierstrass: for e = 3, see also [14], for e = 4, e = 5,
see ([16], [17]).

(b) If g ≤ 8, then S is Weierstrass ([18]).
(c) If 2e > c− 1 and g = 9, then S is Weierstrass ([19]).

4. Let H = IN \ S, define weight(S) :=
∑g

i=1 hi − i: if weight(S) ≤ g/2, then S is
Weierstrass ([7]).

5. If B is negatively graded (i.e. T 1
B(`) = 0 for each ` ≥ 0), then S is Weierstrass ([26]).
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3.2 Construction of the versal deformation with Gm-action.
With the above notations for the monomial curve X := Spec(F[S]), S a numerical semi-
group, we shall describe Pinkham’s algorithm [25] to construct a deformation Y admitting a
Gm-action. Starting from the infinitesimal deformation associated to

⊕
`<0 T

1
B(`), by means of

a finite number of steps one can obtain such deformation (with the greatest parameter space).
Each step consists in the lifting of a deformation on Σ = Spec F[ε]/(ε)n to a deformation on
Σ′ = Spec F[ε]/(ε)n+1.
Further in the last step we recall Pinkham’s construction (when possible) of a projective regular
curve C admitting S as semigroup at the point P∞ (see [25, 13.3]). This construction is the main
ingredient for the proof of Theorem 3.9.

Step (0) The first step of the algorithm is the explicit computation of a F-basis E for T 1
B.

Step (1) Let r be a (p× q) matrix of relations among the generators {fi} of I .
For each gj ∈ E construct a (p × q) matrix ρj = ρj(x0, ..., xk), such that R = r + ερj is a
relation matrix among the equations of F = f + εgj , i.e.,

(r + ερj)(f + εgj) = rf + ε(rgj + ρjf) = 0 (mod ε2).
A matrix ρj such that ρjf = −rgj exists since any g ∈ HomB(I/I2, B) is a derivation (3.15.2),
and so the matrix rg has entries ∈ I , for each g ∈ HomB(I/I2, B). In fact if

∑
rifi = 0,

then 0 = g(
∑
rifi) =

∑
rig(fi) +

∑
g(ri)fi =

∑
rig(fi) mod I, i.e.

∑
rig(fi) ∈ I .

Hence any relation among the (fi) lifts to a relation R among the (Fi), so that the projection π
is flat (3.19). Let E =< g1, ..., gm > be the F-basis of

⊕
`<0 T

1
B(`): assign a parameter Uj to

each gj with
weight(Uj) := −deg(gj).

We obtain homogeneous equations

F = f + ε(g1U1 + ...+ gmUm) ∈ F[U1, ..., Um, x0, ..., xk]

for a deformation Y1 of X with base space Spec F[ε]/(ε)2.
By linearity the matrix ρ := U1ρ1 + ...+Umρm is such that r+ ερ is a relation matrix for F .

Step (2) Now, called g := (g1U1 + ... + gmUm), look for a vector h and for a matrix ρ′

such that
F = f + εg + ε2h and R = r + ερ+ ε2ρ′

verify
RF = rf + ε(rg + ρf) + ε2(ρg + rh+ ρ′f) ≡ 0 mod (ε)3

RF = ε2(ρg + rh+ ρ′f) ≡ 0 mod (ε)3

Note that ρg is quadratic in U1, ..., Um, therefore both ρ′, h will be quadratic in U1, ..., Um. To
solve this equation we must impose several conditions to the variables {U1, ..., Um}, but a solu-
tion exists since X has a versal deformation by (3.12).

....

Step (n) The matrices to find have entries of degree n in U1, ..., Um. We already know that
the algorithm ends. Surely it ends when deg(Ui1 ...Uih) > deg(fj) ∀ j and ∀ (i1, ..., ih). In fact
at this step the needed matrices are null by the theorem of existence of a versal deformation for
X admitting a Gm-action [25].
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Last Step Let R := F[U1, ..., Un]/J , Σ = Spec(R) be the parameter space of the con-
structed deformation Y of X with Gm-action and let F = f+U1g1 + ...+Umgm+U2

1h11 + . . .

be the defining equations of Y . Substitute Uix
weight(Ui)
k+1 for Ui and letA := R[x0, . . . , xk+1]/(F ).

Then the morphism π : Proj(A) −→ Σ is flat and proper with fibres reduced projective curves
[25, 13.4]. The generic fibre C, has only one regular point P∞(tn0 : tn1 : · · · : tnk : 0) at infinity.
If one fibre C is regular, then the semigroup associated to the pair (C,P∞) is clearly equal to the
semigroup S.

4 Examples
In this section we show the above algorithm in some particular example.

4.1 The case of embedding dimension 3

First we calculate explicitely a deformation with Gm-action for a monomial curve X ⊆ A3
F.

Example 4.1 Let S =< 4, 9, 11 >, B = F[S], X := Spec B.
The conductor is c = 15, the Apery set is A = {n0 = 4, n1 = 9, n2 = 11, n3 = 18}.
The equations defining the curve X in F[x0, x1, x2] are

f1 = x5
0 − x1x2, f2 = x0x

2
1 − x2

2, f3 = −x3
1 + x4

0x2

with matrix of relations: r =

(
−x2 x1 x0

x2
1 −x4

0 −x2

)
=

(
r1

r2

)
and Jacobian matrix

J0 =
(
x0
∂fj
∂x0

, x1
∂fj
∂x1

, x2
∂fj
∂x2

)
=

 5x5
0 −x1x2 −x1x2

x0x
2
1 2x0x

2
1 −2x2

2

4x4
0x2 −3x3

1 x4
0x2



J0 ≡

 t20 0 0
0 t22 0
0 0 t27

 5 −1 −1
1 2 −2
4 −3 1

 (mod I).

Let ∆i := xi
∂
∂xi
, i = 0, 1, 2 (degree 0 derivations).

Step (0) One can easily see that T 1(B) is generated as B-module by

T 1(−18) : t−18(∆1 −∆2) := D1

T 1(−16) : t−16(∆1 + ∆2) := D2

T 1(−11) : t−11(∆1 + ∆2) := D3.

with images the classes mod I of

< g1 =

 0
4x0

−4x1

 , g2 =

 −2x0

0
−2x2

 , g3 =

 −2x1

0
−2x4

0

 >

( Note that as F-vector spaces we have dimFT
1(B) = 17, dimFT

1(B)− = 15).
Step (1) Using the above algorithm (restricted to three generators) we get the infinitesimal
deformation
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π : Spec
(
F[ε]/(ε)2 ⊗ F[x0, x1, x2]/I1

)
−→ Spec

(
F[ε]/(ε)2

)
,

with Ui ∈ F, I1 generated by the rows of F1 = f + εg, with g = U1g1 + U2g2 + U3g3:

F1 = f + ε

U1

 0
x0

−x1

+ U2

 x0

0
x2

+ U3

 x1

0
x4

0

, weight(U1, U2, U3) = (18, 16, 11).

In fact there exists the matrix ρ =

(
−U3 0 0
U1 −U2 U3

)
such that (r + ερ)(f + εg) ≡ 0

(mod (ε)2, i.e., (rg + ρf = 0) (this assures π is flat, with R1 := r+ ερ relation matrix for F1):

rg =

(
U3(x5

0 − x1x2)
U1(−x5

0 + x1x2) + U2(x0x
2
1 − x2

2) + U3(−x3
1 + x4

0x2)

)
= −ρf.

Step(2) Now look for h, ρ′ such that F2 = f + εg + ε2h and R2 = r + ερ + ε2ρ′ satisfy
F2R2 = 0 (mod (ε)3), i.e., ρg + rh+ ρ′f ≡ 0. Get

ρg =

(
−U2U3x0 − U2

3x1

−U1U2x0 − U1U3x1 + U1U2x0 + U2U3x2 + U1U3x1 + U2
3x

4
0

)
=

=

(
−x2 x1 x0

x2
1 −x4

0 −x2

) 0
−U2

3

−U2U3

 = −rh, with h =

 0
U2

3

U2U3

.

Finally one can see that ρh = 0, therefore we can choose ρ′ = 0. Hence the algorithm ends
at the second step and a deformation of f on Spec F[U1, U2, U3] has homogeneous weighted
equations

F = f +

 U2x0 + U3x1

U1x0x0

−U1x1 + U2x2 + U3x
4
0

+

 0
U2

3

U2U3

 .

Remark 4.2 Note that in the entries of the matrix h the coefficient of U2
1 is null. This is clear

since deg(U2
1 ) = 36 > deg(fi), ∀ i = 1, 2, 3, and the equations are homogeneous according

to the existence of a Gm-action. Hence if we restrict to g1, we get the deformation
π : Y = Spec

(
F[U1]⊗ F[x0, x1, x2]/J

)
−→ A1

F
with the ideal J generated by the rows of

F1 =

 x5
0 − x1x2

x0x
2
1 − x2

2

−x3
1 + x4

0x2

+ U1

 0
x0

−x1

 =

 x5
0 − x1x2

x0x
2
1 − x2

2 + U1x0

−x3
1 + x4

0x2 − U1x1

 .

The algorithm ends at step (1) with smooth parameter space A1
F. The Jacobian matrix of the

generic fiber of π is  5x4
0 −x2 −x1

x2
1 + U1 2x0x1 −2x2

4x3
0x2 −3x2

1 − U1 x4
0


One can check that the generic fiber is non singular.

The general 3-Space case. By means of a costruction due to Patil-Singh [23] we can com-
pute directly the equations of the monomial curve associated to a semigroup S =< n0, n1, n2 >.
In this case we already know that every semigroup singularity is smoothable by Shaps’ paper
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[29]: here the equations of a deformation are obtained as minors of a suitable matrix. Let
S =< n0, n1, n2 >, n0 < n1 < n2, let Ap(S) be the Apery set respect to n0 and let{

u := min{n ∈ IN | un1 ∈< n0, n2 >, un1 /∈ Ap(S)}
v := min{n ∈ IN | vn2 ∈< n0, n1 >}

Then


un1 = λn0 + wn2, λ ≥ 1
vn2 = µn0 + zn1, v ≥ 2, v > w, 0 ≤ z < u

further:
(λ+ µ)n0 = (u− z)n1 + (v − w)n2.

(∗).

By [23] we know that the curve is a complete intersection ⇐⇒ zwµ = 0.
Then assume zwµ 6= 0: we get the following generators for the ideal I and the relation module
r of X:

I =


f1 = xu1 − xλ0xw2
f2 = xu−z1 xv−w2 − xλ+µ

0

f3 = xv2 − x
µ
0x

z
1

; r =

(
−xv−w2 xz1 −xλ0
xµ0 −xw2 xu−z1

)
=

(
r1

r2

)
.

Let ei denote the i − th unit row vector. By Shaps’ algorithm we get the following set of
generators of Hom(I/I2, B) as a B-module:

h11 :


f1 7→ det(e1, e1, r2) = 0
f2 7→ det(e1, e2, r2) = xu−z1

f3 7→ det(e1, e3, r2) = xw2

h12 :


f1 7→ det(e1, r1, e1) = 0
f2 7→ det(e1, r1, e2) = xλ0
f3 7→ det(e1, r1, e3) = xz1

h21 :


f1 7→ det(e2, e1, r2) = −xu−z1

f2 7→ det(e1, e2, r2) = 0
f3 7→ det(e1, e3, r2) = xµ0

h22 :


f1 7→ det(e2, r1, e1) = −xλ0
f2 7→ det(e2, r1, e2) = 0
f3 7→ det(e2, r1, e3) = xv−w2

h31 :


f1 7→ det(e3, e1, r2) = −xw2
f2 7→ det(e2, e2, r2) = −xµ0
f3 7→ det(e1, e3, r2) = 0

h32 :


f1 7→ det(e3, r1, e1) = −xz1
f2 7→ det(e3, r1, e2) = −xv−w2

f3 7→ det(e3, r1, e3) = 0

We can construct the infinitesimal deformation (not miniversal, since dim T 1
B is greater, in

general, but the other generators as vector space have greater degrees ).

F = f + ε

U1

0
xu−z1

xw2

+ U2

0
xλ0
xz1

+ U3

−xu−z1

0
xµ0

+ U4

 −xλ00
xv−w2

+

+U5

−xw2−xµ0
0

+ U6

 −xz1xv−w2

0

 = f + εg.

With: weight(U1, ..., U6) = ((v − w)n2, µn0, zn1, wn2, λn0, (u− z)n1).

A relation matrix for F is R = r + ερ, with ρ =

(
−U1 −U3 −U5

−U2 −U4 −U6

)
.

In fact

rg = U1

(
f1

0

)
+ U2

(
0
f1

)
+ U3

(
f2

0

)
+ U4

(
0
f2

)
+ U5

(
f3

0

)
+ U6

(
0
f3

)
.

Now the equation (r + ερ)(f + εg + ε2h) = ε(rg + ρf) + ε2(ρg + rh) = 0
has the solution

16



h =

 U3U6 − U4U5

U2U5 − U1U6

U1U4 − U2U3

 .

Further the entries of h are the 2× 2 minors of the matrix ρ so that ρh = 0: hence there are no
obstructions (conditions on {Ui} necessary to have flatness).
The lift to a deformation with parameter space Spec(F[U1, ..., U6]) is

F = f + U1

0
xu−z1

xw2

+ U2

0
xλ0
xz1

+ U3

−xu−z1

0
xµ0

+ U4

 −xλ00
xv−w2

+

+U5

−xw2−xµ0
0

+ U6

 −xz1xv−w2

0

+

 U3U6 − U4U5

U2U5 − U1U6

U1U4 − U2U3

 .

Since X is smoothable [29], we deduce in particular that (0, 0, 0) is a regular point on the
general fibre: hence

1 ∈ {u− z, z, v − w,w, λ, µ}.

4.2 The example of Buchweitz.

We show what happens in the following case of a non-smoothable monomial curve.

Example 4.3 This example due to Buchweitz [2] shows the first known case of non-smoothable
monomial curve (see [2]). We calculate explicitly the miniversal deformation. Let

S =< 13, 14, 15, 16, 17, 18, 20, 22, 23 >

The ring B = F[S] has 32 equations in F[x0, . . . , x8] (found by means of CoCoA [5]):

−x2
1 + x0x2 −x2

2 + x1x3 −x1x2 + x0x3 −x2
3 + x2x4

−x2x3 + x1x4 −x1x3 + x0x4 −x2
4 + x3x5 −x3x4 + x2x5

−x2x4 + x1x5 −x1x4 + x0x5 −x2
5 + x3x6 −x4x5 + x2x6

−x3x5 + x1x6 −x2x5 + x0x6 x2
0x1 − x2

6 −x2
0x3 + x6x7

−x2
6 + x5x7 −x3

0 + x4x7 −x5x6 + x3x7 −x4x6 + x2x7

−x3x6 + x1x7 −x2x6 + x0x7 x2
0x5 − x2

7 −x0x1x5 + x7x8

−x2
0x4 + x6x8 −x2

0x2 + x5x8 −x5x7 + x4x8 −x4x7 + x3x8

−x3x7 + x2x8 −x2x7 + x1x8 −x1x7 + x0x8 −x2
0x6 + x2

8

The Jacobian matrix whose rankP is 8 if P ∈ X, P 6= (0, . . . , 0) is the following:
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J =



x2 −2x1 x0 0 0 0 0 0 0
0 x3 −2x2 x1 0 0 0 0 0
x3 −x2 −x1 x0 0 0 0 0 0
0 0 x4 −2x3 x2 0 0 0 0
0 x4 −x3 −x2 x1 0 0 0 0
x4 −x3 0 −x1 x0 0 0 0 0
0 0 0 x5 −2x4 x3 0 0 0
0 0 x5 −x4 −x3 x2 0 0 0
0 x5 −x4 0 −x2 x1 0 0 0
x5 −x4 0 0 −x1 x0 0 0 0
0 0 0 x6 0 −2x5 x3 0 0
0 0 x6 0 −x5 −x4 x2 0 0
0 x6 0 −x5 0 −x3 x1 0 0
x6 0 −x5 0 0 −x2 x0 0 0

2x0x1 x2
0 0 0 0 0 −2x6 0 0

−2x0x3 0 0 −x2
0 0 0 x7 x6 0

0 0 0 0 0 x7 −2x6 x5 0
−3x2

0 0 0 0 x7 0 0 x4 0
0 0 0 x7 0 −x6 −x5 x3 0
0 0 x7 0 −x6 0 −x4 x2 0
0 x7 0 −x6 0 0 −x3 x1 0
x7 0 −x6 0 0 0 −x2 x0 0

2x0x5 0 0 0 0 x2
0 0 −2x7 0

−x1x5 −x0x5 0 0 0 −x0x1 0 x8 x7

−2x0x4 0 0 0 −x2
0 0 x8 0 x6

−2x0x2 0 −x2
0 0 0 x8 0 0 x5

0 0 0 0 x8 −x7 0 −x5 x4

0 0 0 x8 −x7 0 0 −x4 x3

0 0 x8 −x7 0 0 0 −x3 x2

0 x8 −x7 0 0 0 0 −x2 x1

x8 −x7 0 0 0 0 0 −x1 x0

−2x0x6 0 0 0 0 0 −x2
0 0 2x8



Now we summarize the computation of dim T 1
B(`) by means of the formula

dim T 1
B(`) = #G` − 1− ρ`.

It is useful to consider the Jacobian matrix evaluated in P (1, . . . , 1) with the rows ordered by
degree: here the first column shows the weighted degrees of the equations.
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(
deg | J(1)

)
=

deg x0 x1 x2 x3 x4 x5 x6 x7 x8

13 14 15 16 17 18 20 22 23

28 1 −2 1 0 0 0 0 0 0
29 1 −1 −1 1 0 0 0 0 0
30 0 1 −2 1 0 0 0 0 0
30 1 −1 0 −1 1 0 0 0 0
31 0 1 −1 −1 1 0 0 0 0
31 1 −1 0 0 −1 1 0 0 0
32 0 0 1 −2 1 0 0 0 0
32 0 1 −1 0 −1 1 0 0 0
33 0 0 1 −1 −1 1 0 0 0
33 1 0 −1 0 0 −1 1 0 0
34 0 0 0 1 −2 1 0 0 0
34 0 1 0 −1 0 −1 1 0 0
35 0 0 1 0 −1 −1 1 0 0
35 1 0 −1 0 0 0 −1 1 0
36 0 1 0 −1 0 0 −1 1 0
36 0 0 0 1 0 −2 1 0 0
36 1 −1 0 0 0 0 0 −1 1
37 0 1 −1 0 0 0 0 −1 1
37 0 0 1 0 −1 0 −1 1 0
38 0 0 1 −1 0 0 0 −1 1
38 0 0 0 1 0 −1 −1 1 0
39 −3 0 0 0 1 0 0 1 0
39 0 0 0 1 −1 0 0 −1 1
40 0 0 0 0 0 1 −2 1 0
40 2 1 0 0 0 0 −2 0 0
40 0 0 0 0 1 −1 0 −1 1
41 −2 0 −1 0 0 1 0 0 1
42 −2 0 0 −1 0 0 1 1 0
43 −2 0 0 0 −1 0 1 0 1
44 2 0 0 0 0 1 0 −2 0
45 −1 −1 0 0 0 −1 0 1 1
46 −2 0 0 0 0 0 −1 0 2

The matrix associated to degree 0 derivations mod I is

J0 =

(
xi
∂Fj
∂xi

)
=


t28 0 . . . 0
0 t29 . . . 0
... . . .
0 0 . . . t46

 J(1).

Now we show that dimF T
1
B = 21; to find a basis for T 1

B(`) we have to solve the homegenous
system associated to the minor of J(1) formed by the rows of weight ∈ H`.
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Step (0) First for each ` ∈ ZZ we describe the subsets Gell, Hell.

` G` #G` H ρ dim T 1
`

−23 {0, .., 7} 8 {28, .., 35, 42, 44} ρ = 7 0
−22 {0, .., 6, 8} 8 {28, .., 34, 41, 43, 46} ρ = 7 0
−21 {0, ..., 8} 9 {28, .., 33, 40, 42, 45, 46} ρ = 8 0
−20 {0, ..., 5, 7, 8} 8 {28, ..., 32, 39, 41, 44, 45} ρ = 8 0
−19 {0, ..., 8} 9 {28, ..., 31, 38, 40, 43, 44} ρ = 8 0
−18 {0, ..., 4, 6, 7, 8} 8 {28, ..., 30, 37, 39, 42, 43} ρ = 8 0
−17 {0, ..., 3, 5, ..., 8} 8 {28, 29, 36, 38, 41, 42} ρ = 7 0
−16 {0, 1, 2, 5, 6, 7, 8} 7 {28, 35, 37, 40, 41} ρ = 7 0
−15 {0, 1, 3, ..., 8} 8 {34, 36, 39, 40} ρ = 7 0
−14 {0, 2, , ..., 8} 8 {33, 35, 38, 39} ρ = 7 0
−13 {1, ..., 8} 8 {32, 34, 37, 38} ρ = 7 0
−12 {0, ..., 8} 9 {31, 33, 36, 37} ρ = 7 1
−11 {0, ..., 8} 9 {30, 32, 35, 36} ρ = 7 1
−10 {0, ..., 7} 8 {29, 31, 34, 35} ρ = 6 1
−9 {0, ..., 6} 7 {28, 30, 33, 34} ρ = 5 1
−8 {0, ..., 6} 7 {29, 32, 33} ρ = 5 1
−7 {0, ..., 5} 6 {28, 31, 32} ρ = 4 1
−6 {0, ..., 5} 6 {30, 31} ρ = 4 1
−5 {0, ..., 4} 5 {29, 30} ρ = 3 1
−4 {0, 1, 2, 3, 8} 5 {28, 29} ρ = 2 2
−3 {0, 1, 2, 7} 4 {28} ρ = 1 2
−2 {0, 1, 8} 3 ∅ 2
−1 {0, 6, 7} 3 ∅ 2

1 {5, 6} 2 ∅ 1
2 {4} 1 ∅ 0
3 {3, 5} 2 ∅ 1
4 {2, 4} 2 ∅ 1
5 {1, 3} 2 ∅ 1
6 {0, 2} 2 ∅ 1

Step (1) By using “FreeMat” (see [11]) we can construct the miniversal deformation (we
present in detail the case ` = −12 with H` = {31, 33, 36, 37}.
Let a be the submatrix of J(1) formed by the rows with degrees ∈ H`:

a =

deg x0 x1 x2 x3 x4 x5 x6 x7 x8

13 14 15 16 17 18 20 22 23

31 0 1 −1 −1 1 0 0 0 0
31 1 −1 0 0 −1 1 0 0 0
33 0 0 1 −1 −1 1 0 0 0
33 1 0 −1 0 0 −1 1 0 0
36 0 1 0 −1 0 0 −1 1 0
36 0 0 0 1 0 −2 1 0 0
36 1 −1 0 0 0 0 0 −1 1
37 0 1 −1 0 0 0 0 −1 1
37 0 0 1 0 −1 0 −1 1 0
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Step (1.1)
Write the matrix b obtained by deleting the deg-column in a, find rank(b) and a total reduction
c of b, that is

c =



1 0 0 0 0 0 0 −10 9
0 1 0 0 0 0 0 −9 8
0 0 1 0 0 0 0 −8 7
0 0 0 1 0 0 0 −7 6
0 0 0 0 1 0 0 −6 5
0 0 0 0 0 1 0 −5 4
0 0 0 0 0 0 1 −3 2
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0


Step (1.2) Let ∆i := xi

∂
∂xi
, i = 0, . . . , 8 (degree 0 derivations). Find the degree-0 derivation

whose coefficients are a solution of the homogeneous system associated to c and by using the
Euler’s identity, we obtain a solution where the coefficient of ∆0 is null. Then:

T 1
B(−12) =< t−12∆(1) >, with ∆(1) := ∆1 +2∆2 +3∆3 +4∆4 +5∆5 +7∆6 +9∆7 +10∆8.

Step (1.3) Let e := [0, 1, 2, 3, 4, 5, 7, 9, 10]T , to obtain the image g1 of ∆(1) make the product:
J(1)e =

[
0, 0, ..., 0, 13, 0, 0,−13, 0, 13, 13, 13,−13, 13, 13

]T and so ∆(1) takes f to g1 =
[t28, t29, t30, t30, t31, t31, t32, t32, t33, t33, t34, t34, t35, t35, t36, t36, t36, t37, t37, t38, t38, t39, t39, t40,
t40, t40, t41, t42, t43, t44, t45, t46] ∗ J(1)e =[

0, 0, ...0, 13t27, 0, 0,−13t28, 0, 13t29, 13t30, 13t31,−13t32, 13t33, 13t34
]T

=[
0, 0, ...0, 13x0x1, 0, 0,−13x2

1, 0, 13x1x2, 13x2
2, 13x1x4,−13x1x5, 13x2x5, 13x2

4

]T ∈ (M2
)32

.
(Here ∗ denotes the pairwise vector product). Analogously we have:
T 1
B(−11) = t−11 < ∆(1) > .

f 7→ g2 =
[

0, 0, ...0, 13t28, 0, 0,−13t29, 0, 13t30, 13t31, 13t32,−13t33, 13t34, 13t35
]T

=[
0, 0, ...0, 13x2

1, 0, 0,−13x1x2, 0, 13x2
2, 13x1x4, 13x1x5,−13x2x5, 13x2

4, 13x4x5

]T ∈ (M2
)32

.

T 1
B(−10) = t−10∆(2) with ∆(2) := ∆1 + 2∆2 + 3∆3 + 4∆4 + 5∆5 + 7∆6 + 9∆7.

With image g3 = t−10[t28, t29, t30, t30, t31, t31, t32, t32, t33, t33, t34, t34, t35, t35, t36, t36, t36, t37,
t37, t38, t38, t39, t39, t40, t40, t40, t41, t42, t43, t44, t45, t46] ∗ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
-10,-10, 0,-10, 0, 13,-10, 0,-13,-10, 3, 13, 3,-13, 3,-7] = [0, . . . , 0,-10t26,-10t27, 0, . . . ].

Therefore f 7→ g3 ∈
(
M2
)32

. In the same way one obtains:

T 1
B(−9) = t−10 < ∆(3) >, with ∆(3) = ∆1 + 2∆2 + 3∆3 + 4∆4 + 5∆5 + 7∆6;
T 1
B(−8) = t−8 < ∆(3) > . Further one can find that
T 1
B(−7) = t−7 < ∆1 + 2∆2 + 3∆3 + 4∆4 + 5∆5 >
T 1
B(−6) = t−6 < ∆1 + 2∆2 + 3∆3 + 4∆4 + 5∆5 >
T 1
B(−5) = t−5 < ∆1 + 2∆2 + 3∆3 + 4∆4 >
T 1
B(−4) = t−4 < ∆1 + 2∆2 + 3∆3, ∆8 >
T 1
B(−3) = t−3 < ∆1 + 2∆2, ∆7 >: T 1

B(−2) = t−2 < ∆1, ∆8 >
T 1
B(−1) = t−1 < ∆6, ∆7 >
T 1
B(1) = t < ∆5 >
T 1
B(3) = t3 < ∆5 >
T 1
B(4) = t4 < ∆4 >
T 1
B(5) = t5 < ∆3 >
T 1
B(6) = t6 < ∆2 > .
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We conclude that each generator of T 1
B sends f 7→ g ∈

(
M2
)32

.

Hence all the hypersurfaces defined by the equations Fi ∈ F[x0, . . . , x8, α1, . . . , α21], i =
1 . . . , 32 of the miniversal deformation are singular at P (0, 0, . . . , 0, α1, . . . , α21). In particular
every fibre XT is singular: this means that X is non-smoothable.

5 Arithmetic sequences of embedding dimension four.

In this section using the above algorithms we prove that semigroups of embedding dimension
four generated by an arithmetic sequence are Weierstrass.

First we recall how to find the generators for the ideal I of the monomial curve associated
to the semigroup. We refer to the paper [24] and we use the same notations.

Notation 5.1 Assume S =< n0, . . . , np, np+1 >, with ni = n0 + id (minimal system of gener-
ators), and denote by Ap(S) the Apery set respect to n0.
Let a, b ∈ IN such that n0 = a(p+ 1) + b, with a ≥ 1, 0 ≤ b ≤ p.
For each t ∈ IN, let qt, rt with 1 ≤ rt ≤ p such that t = qtp+ rt, let gt := qtnp + nrt and let{

u := min{t ∈ IN | gt /∈ Ap(S)}
v := min{n ∈ IN | vnp+1 ∈< n0, ..., np >}

Then


gu = λn0 + wnp+1, λ ≥ 1
vnp+1 = µn0 + gz, v ≥ 2, v > w, 0 ≤ z < u

further :
(λ+ µ)n0 = gu−z + (v − w)np+1.

(∗)

It is easy to see that u = p+ 1, λ = w = 1 and
if b = 0, then z = 0 .
If b ≥ 1 : v = a+ 1, µ = a+ d ≥ 2, z = p+ 1− b
and a minimal set of generators for the ideal I is the union of the following sets:

ξij =

[
xixj − x0xi+j if i+ j ≤ p, 1 ≤ i ≤ j
xixj − xi+j−pxp if i+ j > p, 1 ≤ i ≤ j ≤ p− 1

φi = x1+ixp − xixp+1 with 0 ≤ i ≤ p− 1

ψj = xb+jx
v−1
p+1 − x

µ
0xj with 0 ≤ j ≤ p− b

θ = xvp+1 − x
µ
0xp+1−b.

Now we deal with the case p = 2 (embdim(S) = 4): here

{ξij} = {ξ11} = {x2
1 − x0x2}, with deg(ξ11) = 2n1,

{φi} = {φ0, φ1} = {x1x2 − x0x3, x
2
2 − x1x3}, deg(φ0) = n1 + n2, deg(φ1) = 2n2,

{ψj} =

[
{ψ0, ψ1} = {x1x

v−1
3 − x1+µ

0 , x2x
v−1
3 − xµ0x1} if b = 1, deg(ψ1) = µn0 + n1,

{ψ0} = {x2x
v−1
3 − x1+µ

0 } if b = 2, deg(ψ0) = (1 + µ)n0,

θ =

[
xv3 − x

µ
0xp+1−b, deg(θ) = µn0 + np+1−b if b = 1, 2

xv3 − x
µ
0 , deg(θ) = µn0 if b = 0

.
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Hence the equations for the associated monomial curve in A4 are :

(b = 0)


x2

1 − x0x2

x1x2 − x0x3

x2
2 − x1x3

xv3 − x
µ
0

 ; (b = 1)


x2

1 − x0x2

x1x2 − x0x3

x2
2 − x1x3

x1x
v−1
3 − x1+µ

0

x2x
v−1
3 − xµ0x1

xv3 − x
µ
0x2

 ; (b = 2)


x2

1 − x0x2

x1x2 − x0x3

x2
2 − x1x3

x2x
v−1
3 − x1+µ

0

xv3 − x
µ
0x1

 .

Lemma 5.2 Assume S =< n0, n1, n2, n3 >, minimally generated by an arithmetic sequence.
With notation fixed in (5.1) we have:

1. T 1
B(−µn0) =< t−µn0(∆1 + 2∆2 + 3∆3) >.

2. Further in case b = 2, we have

T 1
B(−(v − 1)n3) =< t−(v−1)n3(∆1 + 2∆2 + 3∆3) >

T 1
B(−n2) =< t−n2(2v∆1 + (v + 1)∆2 + 2∆3) >

Proof. (1). With notations (3.14) and (5.1),assume ` = −µn0. Further recall that µ ≥ 2.
Hence #G` = 4. Now proceed separately according that b = 0, 1, 2.

(Case b = 0). Easily one can see that H` = {2n1, n1 + n2, 2n2}.
The degree 0 Jacobian matrix in this case is

J(0) =
(
xi
∂fj
∂xi

)
=


−x0x2 2x2

1 −x0x2 0
−x0x3 x1x2 x1x2 −x0x3

0 −x1x3 2x2
2 −x1x3

−µxµ0 0 0 vxv3

 .

The evaluation of this matrix in P (1, . . . , 1) ∈ X is

J(1) =


−1 2 −1 0
−1 1 1 −1

0 −1 2 −1
−µ 0 0 v


Then dim(V`) = 2 and dim(T 1

B(−µn0)) = 4 − 2 − 1 = 1. A vector (0, a, b, c)T such that
J(1)(0, a, b, c)T has the first three entries null is (0, 1, 2, 3)T . We obtain that a basis of

T 1
B(−µn0) is t−µn0(∆1 + 2∆2 + 3∆3).

( Case b = 1). We have H` =

[
{2n1, n1 + n2} if v = 2
{2n1, n1 + n2, 2n2} if v > 2

. In fact

2n1 − µn0 = n2 + (1− µ)n0 /∈ S since µ ≥ 2 and {ni} is a minimal set of generators,
n1 + n2 − µn0 = 3d− (µ− 2)n0 /∈ S, since n0 + 3d = n3,

2n2 − µn0 = 3n2 − vn3 = (3− v)n0 + (6− 3v)d =

[
n0, if v = 2

< n0, if v > 2
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for any other generator fj of the ideal I , obviously deg(fj)− µn0 ∈ S.
The deg 0 Jacobian matrix is

J(0) =
(
xi
∂fj
∂xi

)
=


−x0x2 2x2

1 −x0x2 0
−x0x3 x1x2 x1x2 −x0x3

0 −x1x3 2x2
2 −x1x3

−(1 + µ)x1+µ
0 x1x

v−1
3 0 (v − 1)x1x

v−1
3

−µxµ0x1 −xµ0x1 x2x
v−1
3 (v − 1)x2x

v−1
3

−µxµ0x2 0 −xµ0x2 vxv3


The evaluation of this matrix in P (1, . . . , 1) ∈ X is

J(1) =


−1 2 −1 0
−1 1 1 −1

0 −1 2 −1
−(1 + µ) 1 0 (v − 1)
−µ −1 1 (v − 1)
−µ 0 −1 v


In both cases we see that dim(V`) = 2. Then dim(T 1

B(−µn0)) = 4−2−1 = 1 and analogously
to case b = 0, we recover the same basis for T 1

B(−µn0).

( Case b = 2) As above: H` = {2n1, n1 + n2, 2n2} because
2n2 − µn0 = n1 + 2n2 − vn3 = (3− v)n0 + (5− 3v)d /∈ S (it is < n0).

The degree 0 Jacobian matrix in this case is

J(0) =


−x0x2 2x2

1 −x0x2 0
−x0x3 x1x2 x1x2 −x0x3

0 −x1x3 2x2
2 −x1x3

−(1 + µ)x1+µ
0 0 x2x

v−1
3 (v − 1)x2x

v−1
3

−µxµ0x1 −xµ0x1 0 vxv3


this matrix evaluated in P (1, . . . , 1) is

J(1) =


−1 2 −1 0
−1 1 1 −1
0 −1 2 −1

−(1 + µ) 0 1 (v − 1)
−µ −1 0 v


Therefore dim(V`) = 1, a basis for T 1

B(−µn0) is t−µn0(∆1 + 2∆2 + 3∆3).

(3). Let ` = −(v − 1)n3. Then:

G` =

[
{0, 1, 2}, if v = 2
{0, 1, 2, 3}, if v > 2

, H` =

[
{2n1} if v = 2
{2n1, n1 + n2, 2n2} if v > 2

.

In fact: 2n1 − (v − 1)n3 ≤ 2n1 − n3 = n0 − d /∈ S
n1 + n2 − (v − 1)n3 = n0 ∈ S, if v = 2, n1 + n2 − (v − 1)n3 < 0, if v > 2.
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2n2 − (v − 1)n3 = n1 ∈ S, if v = 2, n1 + n3 − (v − 1)n3 < 0, if v > 2.
for any other generator fj of the ideal I , obviously deg(fj)− µn0 ∈ S.
In both cases we conclude that dim(T 1

B(`)) = 1, with basis

t−(v−1)n3(∆1 + 2∆2 + 3∆3).

Let now ` = −n2. Then: G` = {0, 1, 3}, H` = {vn3}.
In fact assume vn3−n2 ∈ S, i.e., vn3 = αn0 +βn1 +γn2 + δn3, with γ ≥ 1, then δ = 0 by the
minimality of v; β ≥ 1 =⇒ (since vn3 = µn0+n1) µn0+n1 = αn0+(β−1)n1+(γ−1)n2+
n0 + n3 =⇒ (v − 1)n3 ∈< n0, n1, n2 >, contradiction. Then β = 0 and so vn3 = αn0 + γn2,
impossible since the residues mod n0 cannot be equal. We conclude that dim(T 1

B(`) = 1 and a
basis is t−n2(2v∆1 + (v + 1)∆2 + 2∆3).

In next theorem we prove that any semigroup generated by an arithmetic sequence with
embedding dimension 4 is Weierstrass. Further we find the equations of a 1-parameter flat
family of smooth projective with only one point P∞ at infinity and the semigroup associated at
P∞ equal to S. This is done by using Pinkham’s algorithm [25].

Theorem 5.3 With notation 5.2, assume the semigroup S =< n0, n1, n2, n3 > minimally gen-
erated by an arithmetic sequence and let X := Spec(F[S]): then X is smoothable and S is
Weierstrass. More precisely there exists one deformation Y of X with smooth generic fibres
(projective curves) and parameter space A1

F :

1. If b = 0, the equations F = f + Uxµn0

4


0
0
0
1

 =


x2

1 − x0x2

x1x2 − x0x3

x2
2 − x1x3

xv3 − x
µ
0 + Uxµn0

4


define the required deformation π : Y −→ A1

F.

2. If b = 1, the equations F = f + Uxµn0

4


0
0
0
x0

x1

x2

 =


x2

1 − x0x2

x1x2 − x0x3

x2
2 − x1x3

x1x
v−1
3 − x1+µ

0 + Ux0x
µn0

4

x2x
v−1
3 − xµ0x1 + Ux1x

µn0

4

xv3 − x
µ
0x2 + Ux2x

µn0

4


define the required deformation π : Y −→ A1

F.

3. If b = 2, F =


x2

1 − x0x2 + Ux0x
n2
4

x1x2 − x0x3 + Ux1x
n2
4

x2
2 − x1x3 − U2x2n2

4

x2x
v−1
3 − x1+µ

0 + Ux2x
(v−1)n3

4 + Uxv−1
3 xn2

4

xv3 − x
µ
0x1 + Ux3x

(v−1)n3

4

 =

= f + U


x0x

n2
4

x1x
n2
4

0

x2x
(v−1)n3

4 + xv−1
3 xn2

4

x3x
(v−1)n3

4

+ U2


0
0
x2n2

4

0
0


define the required deformation π : Y −→ A1

F.
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Proof. (Case b = 0). In this case the image of the element found in 5.2 for T 1
B(−µn0) (eigen-

vector) and the relation matrix among the generators of the ideal are: g1 = (0, 0, 0, 1)T ,

r =


x2 −x1 x0 0
−x3 x2 −x1 0

xµ0 − xv3 0 0 x2
1 − x0x2

0 xµ0 − xv3 0 x1x2 − x0x3

0 0 xµ0 − xv3 x2
2 − x1x3

 =


x2 −x1 x0 0
−x3 x2 −x1 0
−f4 0 0 f1

0 −f4 0 f2

0 0 −f4 f3

 .

Hence an infinitesimal deformation of X is given by the equations F = f + εUg1.
By a direct computation one has

rUg1 = U


0
0
f1

f2

f3

 , ρ =


0 0 0 0
0 0 0 0

−U 0 0 0
0 −U 0 0
0 0 −U 0

 , ρg1 =



0
0
0
0
0
0
0


.

Following the Pinkham’s method [25, (1.16)], we consider the weighted homogeneous projec-
tive space Proj(F[x0, . . . , x4]), weight(xi) = ni, for 0 ≤ i ≤ 3, weight(x4) = 1) and
substitute the variable U with Uxµn0

4 , (U parameter); therefore we get the deformation Y with
parameter space S = A1 and fibres which are projective curves with only one (regular) point at
infinity P∞ = (tn0 : · · · : tn3 : 0), t 6= 0. The equations are

F = f + Ug1x
µn0

4 .

To verify that the fibres YU , U 6= 0 of the family are non-singular curves it suffices to put
x4 = 1 and study the rank of the jacobian matrix of the affine curve YU ∩ (x4 6= 0). Now this
matrix is equal to the jacobian matrix J of the curve X . We already know that rankP (J) = 3
if P 6= (0, . . . , 0).

J =


−x2 2x1 −x0 0
−x3 x2 x1 −x0

0 −x3 2x2 −x1

−µxµ−1
0 0 0 vxv−1

3

 .

Since by the equations of YU we get P ∈ YU =⇒ P 6= (0, . . . , 0), we are done.

(Case b = 1). In this case the image of the element found in 5.2 for T 1
B(−µn0) (eigenvector)

and the relation matrix among the generators of the ideal are

g1 :=


0
0
0
x0

x1

x2

 , r =



x2 −x1 x0 0 0 0
−x3 x2 −x1 0 0 0
xv−1

3 0 0 −x1 x0 0
0 xv−1

3 0 −x2 0 x0

xµ0 −xv−1
3 0 0 x1 −x0

0 xµ0 −xv−1
3 −x3 x2 0

0 0 −xv−1
3 0 x2 −x1

0 0 xµ0 0 −x3 x2


.
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By a direct computation one has

rUg1 = U



0
0
0
0
f1

f2

0
f3


, ρ =



0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

−U 0 0 0 0 0
0 −U 0 0 0 0
0 0 0 0 0 0
0 0 −U 0 0 0


, ρg1 =



0
0
0
0
0
0
0


.

Following the Pinkham’s method as above, we substitute the variable U with Uxµn0

4 , (U pa-
rameter); therefore we get the deformation Y with parameter space S = A1 and fibres which
are projective curves with only one regular point at infinity P∞ = (tn0 : · · · : tn3 : 0), t 6= 0.
The equations are

F = f + Ug1x
µn0

4 .

To verify that the fibres YU , U 6= 0 are non-singular curves it suffices to put x4 = 1 and study
the rank of the jacobian matrix of the affine curve YU ∩ (x4 6= 0). This matrix is

J =



−x2 2x1 −x0 0
−x3 x2 x1 −x0

0 −x3 2x2 −x1

−(1 + µ)xµ0 + U xv−1
3 0 (v − 1)x1x

v−2
3

−µxµ−1
0 x1 −xµ0 + U xv−1

3 (v − 1)x2x
v−2
3

−µxµ−1
0 x2 0 −xµ0 + U vxv−1

3

 .

We claim that the rank of J = 3 if U 6= 0 hence by the jacobian criterion of regularity we
deduce that the fibres ar smooth for U 6= 0, i.e., the curve X is smoothable and the semigroup
is Weierstrass.

In P0(0 : · · · : 0, 1), U 6= 0 we have the non-null minor det

 U 0 0
0 U 0
0 0 U

 .

If P 6= P0 (P belonging to the fibre YU of the canonical projection π : Y −→ A1), according to
the equations of YU and since v ≥ 2, we have

det

 2x1 −x0 0
x2 x1 −x0

xv−1
3 0 (v − 1)x1x

v−2
3

 = xv−1
3 x2

0 + (v − 1)x1x
v−2
3 (2x2

1 + x0x2) =

= xv−2
3 x0[x0x3 + 3(v − 1)x1x2] = (3v − 2)x2

0x
v−2
3 .

If x0x3 = 0, by the equations we get only P0. We are done.

(Case b = 2). In this case one can easily see that the generator found in 5.2 gives a deforma-
tion with all singular fibres. Then we need to find a different suitable deformation Y such that
the rank of the jacobian matrix is ”generically” equal to 3 by the Jacobian criterion of regularity.
We claim that a deformation which verifies this condition is

F = f + Ug1 + V g2 + V 2h (∗)
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where g1, g2 are the images of the basis of T 1
B(−(v− 1)n3) (resp T 1

B(−n2)) of (5.2.3) and h is
found by the flatness conditions. Precisely, the relation matrix r among the generators of
the ideal and the vectors g1, g2, h are

r =


x2 −x1 x0 0 0
−x3 x2 −x1 0 0

0 xv−1
3 0 −x1 x0

xµ0 0 xv−1
3 −x2 x1

0 xµ0 0 −x3 x2

 , g1 =


0
0
0
x2

x3

 , g2 =


x0

x1

0
xv−1

3

0

 , h =


0
0
−1
0
0

 .

To find h, by a direct computation we get

rUg1 =


0
0
−f2

−f3

0

 = −ρ1f, with ρ1 =


0 0 0 0 0
0 0 0 0 0
0 U 0 0 0
0 0 U 0 0
0 0 0 0 0

 , ρ1g1 =


0
0
0
0
0

 ;

rV g2 = V


−f1

f2

0
−f4

−f5

 = −ρ2f, with ρ2 =


V 0 0 0 0
0 −V 0 0 0
0 0 0 0 0
0 0 0 V 0
0 0 0 0 V

 , ρ2V g2 =


V 2x0

−V 2x1

0
V 2xv−1

3

0

 .

Further ρ2V g2 = −rV 2h, with h =


0
0
−1
0
0

, finally ρ2h =


0
0
0
0
0

 .

Following the Pinkham’s method as above, we substitute the variables U, V respectively with
Ux

(v−1)n3

4 , V xn2
4 ; therefore we get the deformation Y ′ with parameter space S = A2 and fibres

with only one (regular) point at infinity. The equations are
x2

1 − x0x2 + V x0x
n2
4

x1x2 − x0x3 + V x1x
n2
4

x2
2 − x1x3 − V 2x

2(n2)
4

x2x
v−1
3 − x1+µ

0 + Ux2x
(v−1)n3

4 + V xv−1
3 xn2

4

xv3 − x
µ
0x1 + Ux3x

(v−1)n3

4

 .

Finally we claim that the restriction to the line (U = V ) ⊆ S gives a 1-parameter deformation
Y with smooth generic fibre. Since the point P∞ is non-singular, we can put x4 = 1 and study
the rank of jacobian matrix of the affine curve Y ∩ (x4 6= 0):

J(Y ) =


−x2 + U 2x1 −x0 0
−x3 x2 + U x1 −x0

0 −x3 2x2 −x1

−(1 + µ)xµ0 0 xv−1
3 + U (v − 1)xv−2

3 (x2 + U)

−µxµ−1
0 x1 −xµ0 0 vxv−1

3 + U

 .
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As in case b = 1 we can assume P 6= P0 = (0 : · · · : 0 : 1), P belonging to the fibre YU .
Consider the minor

det

 2x1 −x0 0
x2 + U x1 −x0

−x3 2x2 −x1

 = det

 2x1 −x0 0
x2 x1 −x0

−x3 2x2 −x1

+ det

 2x1 −x0 0
U x1 −x0

−x3 2x2 −x1

 =

= −Ux0x1.

If x0 = 0 by the equations we get x1 = 0, xv−1
3 + U = 0 and x2 = +U , and so by the fourth

equation give Uxv−1
3 = 0, impossible.

If x1 = 0 by the equations we get x2 = U (since x0 6= 0 by above), x3 = 0.
The fourth equation gives −xµ+1

0 + U2 = 0.
Now the jacobian matrix in these points is

J(Y ) =


0 0 −x0 0
0 2U 0 −x0

0 0 2U 0
−(1 + µ)xµ0 0 U (v − 1)xv−2

3 (x2 + U)
0 −xµ0 0 U

 .

Recalling the fourth equation we see that the minor

det

 2U 0 −x0

0 2U 0
−xµ0 0 U

 = 2U(2U2 − xµ+1
0 ) = 2U3

Hence rank(J(Y )) = 3 for each P ∈ YU , ∀ U 6= 0. We are done.

Remark 5.4 Note that in case b = 2, v > 2 the deformation Y ′ of the curve X with equations
x2

1 − x0x2

x1x2 − x0x3

x2
2 − x1x3

x1x
v−1
3 − x1+µ

0 + V x0

xv3 − x
µ
0x1 + V x1


has parameter space A1

F, but every fibre of this deformation has a singularity at the origin: hence
in general this construction does not give informations on the smoothability of the curveX even
if the algorithm to construct Y ′ starting from the infinitesimal deformation ends at the first step.
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